

Plant Varieties Journal

Quarter One 2001 Volume 14 Number 1

ADVERTISE YOUR NEW VARIETY OR SERVICES IN THE

Plant Varieties Journal

Plant Breeders and their agents are invited to take this opportunity to promote their new plant varieties by advertising in the Plant Varieties Journal. Consultant Qualified Persons are also invited to advertise their services. The Journal is well circulated throughout the horticultural and agricultural industry. Advertising in the Journal will promote the commercialisation of new plant varieties and the services offered by the qualified persons. Our policy is to promote the varieties which are currently in the PBR scheme and the services of those who are currently accredited by the PBR office.

The Journal also has a Service Directory. This Directory is suitable for advertising the services provided by Consultant Qualified Persons, Agents, Patent Attorneys, CTC sites or photographers.

Advertising is available at a casual space rate as well as a four times rate, attracting a considerable discount of 25%! Advertisements will be published on the back cover or inside front and back covers. The front cover is restricted to full colour photographs of a PBR variety.

Advertising Rates (incl GST)

			Casual	4 issues
Front Cover	(Full Page only)	Colour	\$1193.00	\$3579.00
Back Cover	(Full Page)	Colour	894.00	2684.00
	(Full Page)	Mono	596.00	1790.00
Inside Front Cover	(Full Page)	Mono	477.00	1431.00
	(Half Page)	Mono	298.00	894.00
Inside Back Cover	(Full Page)	Mono	357.00	1073.00
	(Half Page)	Mono	239.00	716.00
Service Directory	(6cm x 6cm)	Mono	60.00 per s	spot

For bookings or further information please contact Kathryn Dawes-Read on 02 6272 4338, fax 02 6272 3650 or email Kathryn.Dawes-Read@affa.gov.au

Plant Varieties Journa

Official Journal of Plant Breeders Rights Australia

QUARTER ONE, 2001

VOLUME 14 NUMBER 1

Part 1 – General Information	
Objections to Applications and Request for Revocation	2
New Location for Plant Breeders Rights Website	
Cumulative Index to Plant Varieties Journal	3
Applying for Plant Breeders Rights	3
Requirement to Supply Comparative Varieties	2 3 3 3 3 3 3 3 3
UPOV Developments	3
Obligation under the International Convention	3
Instructions to Authors	3
Important Changes – Website Address	6
 Current PBR Forms 	ϵ
 Overseas Testing/Data 	6
Update on US Patents Office (USPTO) Changes	7
Descriptions from the Voluntary Cereal Registration Scheme	7

Part 2 - Public Notices

Varieties Included in this Issue	8
Acceptances	11
Variety Descriptions	15
Grants	77
Denomination Changed	80
Change of Agent	81
Change of Agent's Name	82
Change of Assignment	83
Change of Applicant's name	84
Applications Withdrawn	86
Grants Surrendered	86
Corrigenda	87
Appendix 1 – Fees	88
Appendix 2 – List of PBRAC members	90
Appendix 3 – Index of Accredited Consultant 'Qualified Persons'	92
Appendix 4 – Index of Accredited Non-Consultant 'Qualified Persons'	98
Appendix 5 – Addresses of UPOV and Member States	98
Appendix 6 – Centralised Testing Centres	102
Appendix 7 – List of Plant Classes for Denomination Purposes	105
Appendix 8 – Register of Plant Varieties	106
Appendix 9 – Common Name to Botanical Name Index	106
Varietal Descriptions from the Voluntary Cereal Registration Scheme	108
SUBSCRIPTION ENQUIRIES AND ADVERTISING SHOULD BE ADDRESSED TO: PLANT BREEDERS RIGHTS AUSTRALIA	
Department of Agriculture, Fisheries and Forestry – Australia	
GPO Box 858, Canberra ACT 2601 Telephone: (02) 6272 4228 Facsimile: (02) 6272 3650	

CLOSING DATE FOR ISSUE VOL 14 NO 2: June 15, 2001. Anticipated closing date for Vol 14 No 3 September 14, 2001.

Citation: Anon (2001). Plant Varieties Journal. Editors, Hossain T, Hulse N, Prakash K, Costa H, Waterhouse D, Dawes-Read K, Kingdom S, Blazey B. March 2001, 14(1).

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced without written permission. Inquiries should be directed to the Registrar, Plant Breeders Rights

Website: http://www.affa.gov.au/pbr

Plant Breeders Rights Australia (PBRA) is an agency within the Commonwealth Department of Agriculture, Fisheries and Forestry – Australia

Doug Waterhouse Registrar

Deputy Registrar

Policy Development

Katte Prakash Examiner

Tanvir Hossain Examiner

Helen Costa Examiner

Kathryn Dawes-Read Administration Officer

Nadia Giorgi

Carol Atkinson Resource Co-ordinator Administration Officer

Part 1 – General Information

Objections to Applications and Requests for Revocation of a Grant or of a Declaration that a Plant Variety is Essentially Derived from Another Plant Variety

The Plant Breeder's Rights scheme is administered consistent with the model law of *the International Convention for the Protection of New Plant Varieties 1991 (UPOV 91)*, that is, applicants are entitled to protection, in the absence of proof to the contrary.

The Plant Breeder's Rights Office (PBRO) is not required to prove the views, assertions, and opinions of persons challenging protection for plant varieties. Those objecting to/commenting on applications or requesting/commenting on revocation of a grant or declaration that a plant variety is essentially derived from another plant variety must provide conclusive supporting evidence why their objection/comment/request should be upheld. It cannot be stressed too strongly that conclusive argumentation should be provided from the outset.

Objections to Applications

A person may make objections to applications for PBR if (i) their commercial interests would be affected adversely, and (ii) the application will not fulfil all the conditions required by the *Plant Breeder's Rights Act*.

Objections to applications must be lodged with the Registrar no later than six months after the date the description of the variety is published in this journal. The objector must provide evidence of adverse affect on their commercial interests and that the application should not be granted.

The Registrar of the Plant Breeder's Rights Office (PBRO) is required to give a copy of the objection to the applicant. The objection is also available to the general public on request. The applicant has the opportunity to respond to the evidence presented. The Registrar then decides whether or not the objection will be upheld and, subsequently, whether the application will be granted. The PBRO is under no obligation to enter into further dialogue regarding an objection or to communicate reasons why an objection is not upheld. If an objection is upheld it will be notified in this journal.

A payment of \$100 is required on lodgement of the objection. Additional costs of \$75 per hour for work undertaken in relation to the objection will be billed to the objector.

Comments on Applications

The PBRO accepts comments on applications. However, the scheme is managed on normal risk management lines and with an emphasis on the requirement that challengers with a commercial interest must demonstrate conclusively that an application should not be granted.

All written comment will be acknowledged. The PBRO is under no obligation to enter into further communication regarding comments. If an application does not proceed to a grant it will be notified in this journal.

Requests for Revocation, (where an individual's interests are affected) of:

- a Grant
- a Declaration that a Plant
 Variety is Essentially Derived

A person may, when their interests are affected adversely, apply for the revocation of:

- a grant of PBR; or
- a declaration that a plant variety is essentially derived from another plant variety.

The person requesting revocation is required to lodge a revocation payment fee of \$500. The person seeking revocation of a grant or declaration that a plant variety is essentially derived from another plant, must provide conclusive evidence of adverse affect on their interests and that the grant should be revoked.

The PBRO also accepts information regarding revocation of grants and declarations of essentially derived plant varieties. Such information must demonstrate conclusively that a grant or declaration should not have been made. All written information will be acknowledged. The PBRO is under no obligation to enter into further communication regarding information provided.

New Location for Plant Breeders Rights Website

The PBR website has moved to a new location. The current URL is http://www.affa.gov.au/pbr All previous information is retained in this new site. Please visit this site for important information on PBR in Australia, list of protected varieties and all relevant PBR forms. Remember to update the bookmark of your browser with the new PBR address.

Cumulative Index to Plant Varieties Journal

The editorial committee of *Plant Varieties Journal* has decided that the cumulative index will no longer be published in the journal. However, it will be electronically published as a downloadable document in our new PBR website in the location given on previous page. Instead of publishing the cumulative index once in a year it will be updated on a quarterly basis and our clients will be able to easily download the document into their computers. Electronic copy will make the searching easy in this large document and facilitate the exchange of information as quickly as possible. If you do not have a computer or Internet facilities then we will be able send you a hard copy free of charge. Please contact our office if you require further information.

Applying For Plant Breeders Rights

Applications are accepted from the original breeder of a new variety (from their employer if the breeder is an employee) or from a person who has acquired ownership from the original breeder. Overseas breeders need to appoint an agent to represent their interests in Australia. Interested parties should contact the PBR office and an accredited Qualified Person (Appendix 3) experienced in the plant species in question.

Requirement to Supply Comparative Varieties

Once an application has been accepted by the PBR office, it is covered by provisional protection. Also it **immediately** becomes a 'variety of common knowledge' and thus may be required by others as a comparator for their applications with a higher application number.

Applicants are reminded that they are required to release propagative material for comparative testing provided that the material is used for no other purpose and all material relating to the variety is returned when the trial is complete. The expenses incurred in the provision of material for comparative trials is borne by those conducting the trials.

As the variety is already under provisional protection, any use outside the conditions outlined above would qualify as an infringement and would be dealt with under section 53 of the Plant Breeder's Rights Act.

Applicants having difficulties procuring varieties for use in comparative trials are urged to contact the PBR office immediately.

UPOV Developments

Information on UPOV and its activities is available on the INTERNET located at http://www.upov.int The adopted UPOV Technical Guidelines (TG) for testing different plant species are now available from this website at www.upov.int/tg-rom/index-e.htm

Romania became the forty-seventh member state of UPOV on March 16, 2001. The 1991 Act of the UPOV convention has entered into force for Romania from that date.

The complete list of UPOV member states with their address and current status of ratification is given in Appendix 5.

Obligations under the International Convention for the Protection of New Varieties of Plants 1991 (UPOV 91)

Consistent with Australia's membership of UPOV 1991, the criteria for the granting of protection under the *Plant Breeder's Rights Act 1994* (PBRA) is that the variety: has a breeder; is new, distinct, uniform and stable; has an acceptable name; and that application formalities are completed and relevant fees paid.

Applicants for protection need to be aware of the existence of any <u>other</u> Australian legislation which could impact on their intended use of the registered variety. Relatedly, administrators of other Australian legislation may have an interest in applications for registration notified in this journal.

It is feasible for a new variety to be registered under the PBRA, but, as the PBRA co-exists with other laws of the land, the <u>exercise</u> of the breeder's right may be restricted by such legislation. For example, current legislation may prohibit the use of that variety in food, or, the growing of that variety as a noxious weed.

The Plant Breeder's Rights Office (PBRO) advises that it is the responsibility of the applicant and of administrators of legislation to take these matters up directly between the responsible parties and not with the PBRO.

Instruction to Authors: Format for Preparing Detailed Description for *Plant Varieties Journal*

A detailed description for the *Plant Varieties Journal* must be prepared under following headings:

- Details of the Application
- Characteristics
- · Origin and Breeding
- Choice of Comparator(s)
- Comparative Trial
- Prior Applications and Sales
- · Name of the person who prepared the description
- Comparative Table
- At the discretion of the QP/Applicant, scientific papers and other relevant information/publications can be appended to the detailed description

Please note that the PBR office retains editorial control for all published material. Accordingly there may be instances when non-critical portions of a description (eg particularly verbose methodologies or appendices) are <u>not</u> published, although they do remain part of the detailed description. In some cases some non-distinct characteristics presented in a table may be omitted for publication.

Following are some notes for preparing the descriptions under the above headings with some examples of style and format:

Details of the Application

This will include the correct <u>botanical name</u>; the <u>common name</u> of the species; <u>name</u> and <u>synonym</u> (if any) of the variety; <u>application number</u> and the <u>acceptance date</u>; details of the <u>applicant</u>; details of the <u>agent</u> (if any).

For consistency, botanical and common names should follow those of: *Hortus Third*, Staff of the LH Bailey Hortorium, Macmillan Publishing Company, 1976; *Census of Australian Vascular Plants*, RJ Hnatiuk, AGPS, 1990; *The Smart Gardeners Guide to Common Names of Plants*, M Adler, Rising Sun Press, 1994; *A Checklist of Economic Plants in Australia*, CSIRO, 1994; *Australian Plant Name Index*, Australian Biological Resources Study, AGPS, 1991.

Example 1

Genus species

Common name of the species

'Variety' syn Synonym (if applicable)

Application No: xxxx/xxx Accepted: dd month year.
Applicant: Applicant's Name, Town, Stat

(abbreviation) and Country (if not Australia). Agent: **Agent's Name**, Town, State (abbreviation).

Characteristics

Characteristics should be described in the following order: Plant, Stem, Leaf, Inflorescence, Flower and flower parts, Fruit and fruit parts, Seed, other characters (disease resistance, stress tolerance, quality etc). Characters within subheadings should generally be in the following order: habit, height, length, width, size, shape, colour (RHS colour chart reference with edition), other. Use a concise taxonomic style in which subheadings are followed by a colon and characters are separated by a comma. Where there is a UPOV technical guideline available make sure that the asterisk characteristics are included in the description.

Example 2

Characteristics (Table nn, Figure nn) Plant: habit narrow bushy, height medium, early maturing. Stem: anthocyanin absent, internodes short. Leaf: length long, width narrow, variegation present, predominant colour green (RHS 137A), secondary margin colour pale greenyellow (RHS 1A). Inflorescence: corymb. Flower: early, pedicel short, diameter small (average 12.5mm), petals 5, petal colour yellow (RHS 12A), sepals 5 ... etc (Note: give the reference for the edition of RHS colour chart used, eg. all RHS colour chart numbers refer to 1986 edition)

Origin and Breeding

Indicate how the variety was originated, ie. controlled pollination, open pollination, induced mutation,

spontaneous mutation, introduction and selection, seedling selection etc. Give the name of the parents. Also give the characteristics of the parental material by which they differ from the candidate variety. Briefly describe the breeding procedure and selection criteria used in developing the new variety. Also indicate the mode of propagation used during breeding. Give the name(s) of the breeder.

Example 3

Origin and Breeding Controlled pollination: seed parent S90-502-1 x pollen parent S90-1202-1. The seed parent was characterised by early flowering, dark green non-variegated leaves and compact bushy habit. The pollen parent was characterised by late flowering, variegated leaves and narrow bushy habit. Hybridisation took place in <location>, <country> in <year>. From this cross, seedling number S 3736 was chosen in 1993 on the basis of flowering time. Selection criteria: variegated leaves, compact bushy habit and early flowering. Propagation: a number of mature stock plants were generated from this seedling through tissue culture and were found to be uniform and stable. The 'Variety' will be commercially propagated by vegetative cuttings from the stock plants. Breeder: <name>, <location>, <country>.

Example 4

Origin and Breeding Introduction and selection: 5 cycles of selection within <accession number> originating from <originating country> and supplied by the <company name> under a materials transfer agreement. When grown CI2204 was heterogeneous with both hooded and non-hooded types and differences in seed colour. Repeated selection for hooded types produced seven breeding lines (726.1-726.7) which were evaluated for forage and seed production potential. From these lines, an uniform single line known as 726.2.1 was selected to become 'Variety'. Selection criteria: seedling vigour, dry matter yield, uniformly hooded (awnless), seed colour (black). Propagation: by seed. Breeder: <name>, <location>, <country>.

Choice of Comparators

As choosing the most appropriate comparators may be the most crucial part of the trial, we suggest the QPs do more research and record their decisions before making the final selection. Under this heading briefly indicate what factors you have considered in choosing the comparator(s) for the trial. It is strongly recommended that the parental materials or the source germplasm is included in the trial for comparison purposes. If the parents are excluded indicate the reason(s).

Example 5

Choice of Comparators 'Comparator 1', 'Comparator 2' and 'Comparator 3' were initially considered for the comparative trial as these are similar varieties of common knowledge. 'Comparator 1' is a widely available commercial variety of the same species, however it has non variegated leaves. Therefore it was excluded from the trial. 'Comparator 2', was chosen for its variegated leaves and 'Comparator 3' was chosen for

its compact growth habit and variegated leaves. The parents were not considered for the trial because the 'Variety' is clearly distinguishable from the seed parent by its variegated leaves and from the pollen parent by flowering time and growth habit.

Example 6

Choice of Comparators 'Comparator 1' was chosen because it is the original source material from which the variety was selected. Comparator 2' was selected for its similarity with the 'Variety' in seed colour. No other similar varieties of common knowledge have been identified.

Comparative Trial

State the location and date of the trial. Give relevant details on propagation, pot/plot size and type, growing medium, chemical treatments, lighting, irrigation, or management which may be necessary to repeat the trials. State the type of trial design used, the total number of specimens in the trial and how they were arranged. State the number of specimens from which measurements/observations were taken. Also indicate how the specimen was selected and the sampling regime.

Example 7

Comparative Trial Location: Carrum Downs, VIC (Latitude 38°06′ South, elevation 35m), summer-autumn 1996/97. Conditions: trial conducted in a polyhouse, plants propagated from cutting, rooted cuttings planted into 210mm pots filed with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: fifteen pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random. One sample per plant.

Prior Applications and Sales

Indicate the prior overseas applications with Country, Year of lodgement, Current status and Name applied in the following format.

Example 8

Country	Year	Current Status	Name Applied
Germany	1994	Granted	'Variety'
Denmark	1994	Granted	'Variety'

Also indicate date and country of first sale and date of first sale in Australia.

Example 9

First sold in Germany in 1994. First Australian sale Nil.

Name of the person who prepared the description

Name and address of the person who prepared the description. It is preferable that the description be prepared by the Qualified Person or at the very least the draft has been seen and approved by the QP before final submission. Please note that it is a responsibility of the QP under the PBR Act to verify the particulars of the detailed description are accurate.

Example 10

Description: **Name**, Company (optional), Town/suburb, State (abbreviated)

Comparative Table

While preparing the table **NEVER** use the 'table creating features' of word processing packages as they insert hidden formatting blocks that are difficult to remove before publication. Instead, use a <u>single tab mark</u> to align columns. NEVER use drawing objects to create lines, boxes or shading. Instead use the underscore character (_) to create lines for tables. Tables should normally be either 8.5cm wide (half page) or 17.5cm wide (full page). If necessary a very wide table can be presented in landscape orientation.

Please note the following points when preparing the comparative table:

- The candidate variety is always on the left of the table. If the same table is used for two or more candidate varieties, the candidate varieties are arranged in order of application numbers, higher application number to the left of the table. Comparators are always to the right of the candidate(s).
- Arrange the characteristics in order this should be the same as the order in the UPOV technical guidelines for the species. Please ensure that each characteristic marked with an asterisk is included.
- If a UPOV technical guideline is not available use the order same as in the text part: Plant, Stem, Leaf, Inflorescence, Flower, Flower parts, Fruit, Fruit parts, Seed, special characters etc.
- For measured characteristics Mean, Standard Deviation, Least Significant Difference (LSD)*at P≤0.01 is mandatory.
- When quoting significant differences please give the level of probability in the following format: P≤0.001, P≤0.01, or ns.
- For discrete characters do <u>not</u> use scores. Please give a <u>word</u> description. eg. round, medium, tall etc.
- For ranked characteristics just give the numbers, do not use 'normal' statistical analysis. Non-parametric statistical procedures may be used in such cases.
- Use only the number of significant decimal places appropriate to the level of accuracy of the observations.
- If there are two or more candidate varieties, use range tests rather than an LSD, such as Duncan's Multiple Range Test or any other appropriate multiple range test. Enter the grouping characters as alphabet superscripts.

Completed Part 2 Applications should be sent to:

Plant Breeders Rights Australia

Department of Agriculture, Fisheries and Forestry – Australia

GPO Box 858 CANBERRA ACT 2601

To facilitate editing, descriptions may also be sent via e-mail to: Tanvir.Hossain@affa.gov.au or PBR@affa.gov.au

Note: a signed copy of the Part 2 application along with the examination fee, one slide or photograph must also be sent by post.

Important Changes

Website Address

The new website address for Australian PBR office is http://www.affa.gov.au/pbr

Current PBR Forms

The official forms for PBR purposes are periodically updated. A list of current PBR forms with their numbers and date of last update is given below. When a form is updated, the month and the year of the last update follow the form number within parentheses. For example, Form P1 was last updated in September 1998 and therefore this form gets a designation of Form P1 (9/98). We also encourage you to

consult the 'Guidelines for Completing Part 1 Application Form' before filling in the Part 1 Application. To avoid delays we suggest that you use the latest version of the forms.

The Part 2 form has been updated in May 1999 to include the information on the 'Confirmation of Submission of Propagating Material to a Genetic Resource Centre'. Previously this was a separate form to be filled in at the time of final granting of PBR. We now encourage that the information on the Genetic Resource Centre is given at the time of the Part 2 submission to avoid any delay to process the application at the final granting stage.

If you do not have the latest version of the form(s), please contact the PBR office. Alternatively, forms can be downloaded from the PBR web site at http://www.affa.gov.au/pbr

Name of Form	Form Number	Last Updated
Application for Plant Breeders Rights Part 1 – General Information	Form P1	September 1998
Guidelines for Completing Part 1 Application Form	Part1ins	September 1998
Application for Plant Breeders Rights Part 2 – Description of New Variety	Form P2	May 1999
Nomination of a Qualified Person	Form QP 1	April 1999
Certification by a Qualified Person	Form QP 2	April 1999
Proposed Variety Names	Form DEN1	December 1995
Update on the Progress of an Application	Form EXT2	November 2000
Extension of Provisional Protection	Form EXT2	December 1999
Exemption of a Taxon from Farm Saved Seed	Form ET1	September 1998
Status of Application	Form STAT 1	November 1995
ACRA Herbarium Specimen	Form Herb 1	March 2000

Overseas Testing/Data

The PBR Act allows DUS data produced in other countries (overseas data) be used in lieu of conducting a comparative trial in Australia provided certain conditions relating to the filing of applications, sufficiency of the data and the likelihood that the candidate variety will express the distinctive characteristic(s) in the same way when grown locally. Briefly the overseas data could be considered where:

- The first PBR application relating to the candidate variety has been lodged overseas, and
- the variety has previously been test grown in a UPOV member country using official UPOV test guidelines and test procedures, (ie. equivalent to a comparative trial in Australia) and
- either, all the most similar varieties of common knowledge (including those in Australia) have been included in the overseas DUS trial, or

- the new overseas variety is so clearly distinct from all the Australian varieties of common knowledge that further DUS test growing is not warranted, and
- sufficient data and descriptive information is available to publish a description of the variety in an accepted format in Plant Varieties Journal; and to satisfy the requirements of the PBR Act.

It is the policy of this office to not accept overseas data for the following taxa due to the wide genotype by environment interactions that have been previously experienced. Varietal descriptions from overseas trials have consistently been different from those obtained from trials grown under Australian conditions. Consequently, for the following taxon a full PBR trial must be conducted in Australia:

Solanum tuberosum Potato

The Qualified Person, in consultation with the agent/applicant, and perhaps other specialists and

taxonomists, will need to evaluate the overseas data, test report and photographs to see if the application does fulfil all PBR Office requirements, and then advise the agent/applicant:

- either, to submit Part 2 incorporating a description for publication, any additional data and photographs and to pay the examination fee;
- or, to conduct a DUS trial in Australia, recommending to the applicant/agent which additional varieties of common knowledge to include;
- or, submit Part 2 including additional data (information about similar varieties in Australia to show that they are clearly distinct from the candidate variety that a further DUS test growing including the similar varieties is not warranted and that the variety displays the distinctive characteristics when grown in Australia).

Please note that the PBR office does not obtain overseas DUS test reports on behalf of applicants. It is the sole responsibility of the applicants to obtain these reports directly from the relevant overseas testing authorities. Where applicants already have the report they are advised to submit a certified true copy of the report with the Part 1 application. Applicants, or those duly authorised, may certify the copy.

If you do not have the test report available at the time of Part-1 application then you are advised to submit the Part-1 application without the test report. However, you should make arrangements to procure the DUS test report directly from the relevant testing authority. When the report becomes available, a certified copy should be supplied to the QP and the PBR office.

When the trial is based on a UPOV technical guideline and test report in an official UPOV language (English, German or French), it can be lodged in support of the application. In other cases the test reports must be in English.

The applicant/agent and Qualified Person should use the overseas test report to complete Part 2 of the application, making a decision on how to proceed in view of the completeness of the information, the comparators (if any) used in the overseas DUS trial and their knowledge of similar Australian varieties that may not have been included in the overseas test report.

If a description is based on an overseas test report, Australian PBR will not be granted until after the decision to grant PBR in the country producing the DUS test is made. The final decision on the acceptability of overseas data rests with the PBR office.

Update on US Patents Office (USPTO) Changes to Administrative Practice

Further advice has been received in relation to the USPTO's changed practice regarding asexually-reproduced plant varieties. Previously, it had been published in this journal (PVJ 13.3 p7) that the USPTO was taking the position that a foreign grant of a plant variety protection certificate, under the UPOV Convention, constituted a "patent" or "inventor's certificate" within the meaning of the relevant US code [35 USC. 102(d)]. This meant that if:

- (a) an application for a plant variety certificate was *filed* in a foreign country *more than 12 months* before the filing of an application in the US to the same plant variety, *AND*
- (b) the application for plant variety protection was *granted* in the foreign country before the filing of the patent application in the US,

such foreign *grant* would constitute a statutory bar against the patenting of the plant variety in the US.

In January 2001, the US Deputy Commissioner for Patent Examination Policy reversed this changed practice determining, after review of the relevant legislative history, that such a rejection under 35 USC. 102(d), based on a PBR certificate, was <u>not</u> appropriate. However, it should be noted that the Deputy Commissioner has alluded to the possibility of the Office seeking legislative change to 'further clarify the status of certificates of plant variety protection as prior art.'

Descriptions from the Voluntary Cereal Registration Scheme

The Plant Varieties Journal now includes descriptions of cultivars registered under the Voluntary Cereal Registration Scheme. Please note that the publication of these descriptions in the Plant Varieties Journal does not qualify the cultivars to be protected under Plant Breeder's Rights (PBR). PBR is an entirely different scheme and there are certain requirements under the Plant Breeder's Rights Act 1994, which must be satisfied to be eligible for registration under PBR. However, it is possible that some cultivars published under the voluntary scheme are also registered under PBR. When a cultivar is registered under both schemes, the current PBR status of the cultivar is indicated in the descriptions. For information on registering a new cereal cultivar under the voluntary scheme please refer to the 'Cereal Registration Scheme' section at the back of this issue. Please note there are no descriptions from the Voluntary Cereal Registration Scheme in this issue.

Part 2 - Public Notices

Varieties Included in this Issue

			Brassica napus var oleifera	27
Varieties In	cluded in this Iss	ue	'44C71' '46C03'	27 28
			'47C02'(b	77
	e for common names with	botanical	'AG Judge'	86
names is published	in Appendix 9.		'Ag Outback'	30
D 4 1 1 17 1 4		T	'ATR Grace'	31
Botanical Variety		Page	'ATR Hyden'	32
Name Name		Number	'Insignia'	33
Abelia Xgrandiflor		1.5	'PACN164'	35
	Sweet'	15	'TM8'	34
Acacia cognata	-h+'	87	'Trooper'	33
'Limeliş 'UY2'	giit	16	'Varola 50' syn Surpass 400	36
'UY3'		17	Bromus stamineus	
Acacia leprosa		1 /	'Grasslands Excel'	84
'Scarlet	Blaze'	80	'Grasslands Gala'	84
Acmena smithii	Blaze	00	Capsicum annuum var annuum convar pomiferum	10
'Dusky'		11	'Kapuchin'	12
Agapanthus inaper	tus X orientalis	11	Chamelaucium hybrid	10
'Blue B		17	'WX01'	12
Agapanthus oriente			'WX8' 'WX10'	12 12
	von' syn Summer Blue	20	'WX10' 'WX11'	12
	er Haze'	19	'WX11'	12
'Regal I	Beauty'	19	'WX13'	12
'Snow C	Cloud' syn Summer Pearl	18	'WX15'	12
Agapanthus praeco	x subsp <i>orientalis</i>		Chamelaucium megalopetalum X Chamelaucium	12
'Silver S	Sword'	77	uncinatum	
<i>Alstroemeria</i> hybri			'Albany Pearl'	38
'583 JA'		86	'Crystal Pearl'	12
'587B'		86	'Denmark Pearl'	38
	ght' syn Inca Delight	22,80	'Esperance Pearl'	39
	m' syn Inca Dream	80	Chamelaucium uncinatum	
	ght' syn Inca Moonlight	23,80	'Kismet'	86
	1 90-2-2'	86	'WX03'	12
	ell' syn Inca Blaze	80	'WX05'	12
'Savann		87 86	Chamelaucium uncinatum x Chamelaucium axillar	
Anthurium hybrid	nil' syn Emily	80	'My Sweet Sixteen'	41
	eles' syn Pink Champion	11,24	Chrysanthemum hybrid	
Andinko Arachis hypogaea	les syn i nik Champion	11,24	'UoM 92-333-2'	12
'SO97R	,	11	'UoM 95-105-6'	12
Argyranthemum fri		11	'UoM 95-157-6'	12
'Cosupr		11	Cicer arietinum	10
'Summe	er Melody' ^(†)	77	'Howzat'	12
'Summe	er Stars' (b	77	Citrus reticulata hybrid	12
Avena sativa			'Empress' Citrus reticulata × Citrus sinensis	12
'MA510)7'	11,27	'Code 66-75'	12
'Taipan'		25	Citrus sinensis	12
'TAMO	397'	25	'Rohde Summer Navel'	84
'Targa'	D	77	Clematis serratifolia	0-
Barleria cristata			'Kugotia' syn Tiara Gold	42
'Jetstrea		77	Codiaeum variegatum	72
Bougainvillea hybr			'Cleopatra'	13
'Jazzi'		77	'GRU CO 0001'	13
'Jelliber		77	'Grubell' (D syn Bell (D	77
'Marlu'		77	Coleonema pulchrum	
'Siggi'd	,	77	'White Gold'	13
'Toffi'		77	Coprosma hybrid	
'Tosca'	ν	77		13,42
D • • • • • • • • • • • • • • • • • • •	. 1 .1.			
Bougainvillea spec		1.1	Cuphea hyssopifolia	
'Vera D	eep Purple'	11	Cuphea hyssopifolia 'Karissa' ^{(b}	77
'Vera D 'Vera Li	eep Purple' ght Purple'	11 11	Cuphea hyssopifolia 'Karissa' (⁽⁾ 'Lemon Squash'	43
'Vera D 'Vera Li Bracteantha bracte	eep Purple' ght Purple'		Cuphea hyssopifolia 'Karissa' ^{(b}	

Botanical Variety

Name

Brassica napus var oleifera '44C71'

Name

Page

Number

Botanical	Variety	Page	Botanical Variety	Page
Name		Number	Name Name N	Number
	'Shona'	78	Lavandula angustifolia	
	'Victoria'	78	'Avice Hill' syn Impression	50
Cynodon a	dactylon ssp pulchellus		Lavandula hybrid	
	'Wirlga'	86	'Silver Feather'	78
Cynodon t	ransvaalensis x Cynodon dactylon		Leptospermum hybrid	
	'TifEagle'	13	'Daydream'	51
	'Tift 94'	13	'Love Affair'	52
Dactylis g			'Outrageous'	52
	'Grasslands Kara'	84	'Pageant'	53
	'Grasslands Vision'	84	'White Wave'	53
Dianthus 1	hybrid		Leucadendron hybrid	
D: . 1	'Codianki'	78	'Corringle Gold'	78
Diascia hy		70	'Pixy Red'	13
	'Codiach'	78 70	Lilium hybrid	0.1
D .	'Codiape'	78	'Siberia' ^{(b}	81
Duranta r		1.2	Limonium altaica	02
E .:	'Sheena's Lime Glow'	13	'Tall Emille'	82
Eragrostis		4.4	Limonium hybrid 'Daicean' (b syn Ocean Blue (b	02
Eastwag av	'Elvera'	44	'Oceanic Blue'	82 82
restuca ar	<i>undinacea</i> 'Bombina'	87	'Oceanic White'	82 82
		87 85		02
	'Flecha' syn Grasslands Flecha 'Fraydo'	83 78	Liriope gigantea 'Arizona'	13
	'Grasslands Advance'	85	Lolium hybrid	13
	'Prosper'	44, 83	'Grasslands Impact'	85
	'Resolute'	78	Lolium multiflorum	0.5
Ficus benj		76	'Barberia'	83
ricus ochj	'Baft' syn Bushy Prince	78	'Crusader'	55
	'Francis' syn Francis Goldstar	81	'Dargle'	78
	'Pedani'	13	Lolium perenne	70
	'Reginald'	81	'Arena 1'	56
	'Vivian' syn Indigo	78	'Banks'	86
Ficus elas			'Checkmate'	56
	'Melany'	78	'Ceres Kingston'	57
	'Sylvie'	46	'Embassy'	86
Gazania h			'Fitzroy'	86
	'Sugaja'	13	'Grasslands Lincoln'	85
	'Sugamo'	13	'Grasslands Samson'	85
Gossypiun			'Quartet' ^{(b}	78
	'DP 555 BG/RR'	81	'Tolosa'	13
Gypsophil	a paniculata		Lolium perenne x multiflorum	
	'Dangyhappy' syn Happy Festival		'Grasslands Greenstone'	85
	'Festival' syn Pink Festival (b	82	Lotus corniculatus	
	'Magic Arbel'	82	'Grasslands Goldie'	85
	'Magic Gilboa' syn Gilboa	82	Lupinus albus	
	'Magic Golan' syn Golan	82	'Magna'	87
	'Magic Tavor'	82	Magnolia grandiflora	0.1
77 7 1 1	'White Festival'	82	'Strgra'	81
Hebe hybr		4.6	Malus domestica	70
77 7	'Southern Sunrise'	46	'Lochbuie Red Braeburn'	79
Hordeum		1.2	'Red Elstar'()	84
	'B%1302' 'CK85'	13 13	Malus prunifolia var ringo x Malus pumila var	
		47	paradisiaca 'JM1'	12
Hydranae	'Lofty Nijo' a macrophylla	47	Mandevilla xamabilis	13
Hydranget	'Hobella'	49	'Ruby Star'	81
	'Homigo'	49	'White Delite'	81
	'Hopaline'	50	Medicago sativa	01
Impatiens		50	'Grasslands Kaituna'	85
impunctions	'Celdered' syn Celebration Deep R	ed ⁽¹⁾ 78	'Grasslands Torlesse'	85
Impatiens	walleriana		'Rapide'	79
7	'Codimpca'	78	'Salado'	79
Lactuca so	-		'UQL-1'	79
	'Silverado'	86	Medicago truncatula	
			'Jester'(h	79

Botanical Variety	Page	Botanical Variety	Page
*	Number	· · · · · · · · · · · · · · · · · · ·	nber
Neotyphodium lolii		Serruria florida x Serruria rosea	
'AR1'	85	'Carmen'	59
Neotyphodium sp	0.5	Solanum rantonettii	1.4
'AR501'	85	'CATT 1'	14
Olearia axillaris 'Little Smokie'	79	Solanum tuberosum 'Celeste'(83
Pelargonium peltatum	19	'Crop'	82
'Pentom' (b) syn Tomboy2 (b)	79	'Driver' syn Golden Delight	82
'Penvel' syn Velvet2 (b	79	'Goldstar'(b	83
Pentas lanceolata		'Inova'	14
'Blushing Pearl'	86	'Latona'	83
Persea americana		'Liseta'(b	84
'Llanos Hass'	83	'Mondial'(b	84
Petunia hybrid 'Cobink'	87	'Novita'(^D 'Pike'	84 86
Phaseolus vulgaris	07	'Platina'	81
'Arwon'	14	'Red Rascal'	82
'Jade'(b	83,84	'Redstar'	83
'SB4218'	14	'Remarka'	84
Pisum sativum		'Royal Blue'(⁽⁾	83
'Morgan PSE 23'	79	'Satu'	14
'Snowpeak'	79	'Sini'	14
'Trounce'	82	'Smith's Astra'	82
Pittosporum tenuifolium 'Golden Sheen'	87	'Smith's Aurora' ^(†) 'Smith's Comet' ^(†)	82 82
'Ivory Sheen'	87 87	'Smith's Orion'	82 82
Plantago lanceolata	07	'St. Johns'	84
'Grasslands Lancelot'	85	'Suvi'	14
Polygala myrtifolia var grandiflora		'Symfonia'	83
'White Flamingo'	86	'Victoria'	83
Prunus armeniaca		Solidago hybrid	
'Huon Pride'	79	'Dansolgold'	82
Prunus persica	5 0	'Dansolmonte'	82
'Snowbrite'	58	'Dansosolo'	82
Rhododendron hybrid 'Australian Cameo'	87	Spathiphyllum hybrid 'Frederick'	82
Rosa hybrid	07	'G2'	14
'Climbing Seduction'	14	Sporobolus virginicus	
'Devilk' syn Sparkling Orange (83	'Nathus Green'	80
'Devnovia' syn Megan	83	'Ozlawn'	60
'Devrise' syn Cerise Dawn (b)	83	Sutera cordata	
'Devtinta' syn Obsession (b	83	'Bridal Showers'	80
'Dorothea Howard'	79,83	'Gold'n Pearls'	86
'Frystar'(syn Liverpool Remembers 'Frytranquil' syn Golden Moments'	83 b 83	'Novasnow' Syngonium podophyllum	61
'Frytrooper' (b) syn Daily Post (b)	83	'Gold Allusion'	82
'Fryxotic' syn Warm Wishes	79,83	'Maria Allusion' syn Cherry Allusion	
'Granddelta'	86	'White Holly'	82
'Grandepsilon'	86	Syzygium paniculatum	
'JACirst ^{'()} syn Artistry ⁽⁾	79	'Orange Twist'	14
'Korblekaf'	14	Tagetes hybrid	
'Korbolak' syn Melody	87	'Polynema'	81
'Korkunde' syn Toscana	87 87	Trifolium fragiferum 'Grasslands Onward' ^(†)	85
'Kormador' syn Tamara 'Kornafiro'	14	Trifolium pratense	83
'Korwarpeel'	14		14,62
'Meicitrem' syn Lemon Sunblaze	87	'Grasslands Colenso'	85
'Meipelta' syn Fushia Meidiland	87	'Grasslands G27'(D	85
'Schovian' syn Viviane (D	81	'Sensation'	14
'Smooth Melody' syn Hadmelody		Trifolium repens	o =
'Tanarua'	58	'Grasslands Bounty'	85
'Tanotika'	59	'Grasslands Challenge' ^(†) 'Grasslands Demand' ^(†)	85 85
Scaevola aemula 'Blue Fandango'	87	'Grasslands Kopu'	85 85
'Rhapsody'	79	'Grasslands Nusiral'	85
'Sweet Serenade'	79	'Grasslands Prestige'	85

Botanical Name		Page Number	ACCEPTANO
1 vanie	'Grasslands Sustain'	85	
	'Grasslands Tahora'	85	The following varietie
	'PROP' Syn WEF	85	from the date of accep
	'Tillman II'	85	
Trifolium s	subterraneum var yanninicum	00	Acmena smithii
9	'YL012'	14	Lilly Pilly
x Triticoseo	cale		
	'Eleanor'	15	'Dusky'
	'PRIME322'	15	Application No: 2001/
Triticum a	estivum		Applicant: Peter Payr
	'Anlace'	64	
	'Babbler'	64	<i>Anthurium</i> hybrid
	'Braewood'	14	Flamingo Flower
	'Clearfield WHT JNZ'	65	
	'Clearfield WHT STL'	66	'Antinkeles' syn I
	'HS 5170'	14	Application No: 2001/
	'K3057'	14,67	Applicant: Anthura B
	'Kukri'	67	Agent: W & E Sieve
	'Lang'	80	Creek, NSW.
	'M5631'	68	CICCK, IND W.
	'Mitre'	69	Arachis hypogaea
	'Mulgara'	70	
	'Petrie'	80	Peanut
	'QT7057'	86	'SO97R'
	'QT7509'	86	
	'QT7704'	86	Application No: 2001/
	'RP1-97-2-1'	14	Applicant: Univers
	'Strzelecki'	71	Experiment Station.
	'Thornbill'	72	Agent: Peanut Com
	'Wylah' ^(†)	80	QLD.
Triticum tı	urgidum ssp turgidum		
	'Arrivato' (b	80	Argyranthemum fro
	'line 4210.23.6' (b)	80	Marguerite Daisy
	'Tamaroi'	80	
<i>Verbena</i> hy			'Cosupri'
•	'Charmena'	84	Application No: 2000/
	'Florena'	84	Applicant: The Univer
	'Luxena'	84	Plant Promotions Au
	'Morena'	84	NSW.
	'Mylena'	84	115 11.
	'Scarlena'	84	Avena sativa
	'Vertis'	84	Oats
Verticordia	a plumosa x Chamelaucium uncinatur	n	Oals
	'Jasper'	73	'MA5107'
	'Eric John'	87	
Vicia faba			Application No: 2001/
<i>y</i>	'Ascot VF' ^(†)	80	Applicant: Departme
	'Deep Purple'	74	of the State of New
	'Fiesta VF'	80	Grains Research and
Vicia narb			ACT.
	'Tanami'	80	
Vitis vinife			Bougainvillea spec
	'HBS 17-35'	75	Bougainvillea
	'Ralli Seedless'	83	-
	'Ribarits Red Seedless'	84	'Vera Deep Purpl
	'BW 41/5'	79	Application No: 2001/
Xanthoster	non chrysanthus		Applicant: Rijnplant
	'Trailblazer' ^{(b}	80	Agent: Arie van der S
Zoysia jap		50	Agent. Afte van der i
_ojsia jap	'SS-300'	15	'Vera Light Purp
	'SS-500'	15	Application No: 2001/
		1.5	
Zovsia ma	trella		Annlicant Piinnlant
Zoysia ma	rella 'Cavalier'	15	Applicant: Rijnplant Agent: Arie van der S

CES

es are under provisional protection ptance.

1/023 Accepted: 6 Feb 2001. nter, Erina, NSW.

Pink Champion

1/013 Accepted: 6 Feb 2001.

verding Wholesale Nursery, Kemps

1/021 Accepted: 6 Feb 2001.

of Florida Agricultural rsity

npany of Australia Ltd, Kingaroy,

rutescens

0/260 Accepted: 14 Feb 2001.

ersity of Sydney, NSW and Protected australia Pty Ltd, Macquarie Fields,

1/010 Accepted: 7 Feb 2001.

ent of Agriculture for and on behalf w South Wales, Orange, NSW and d Development Corporation, Barton,

ctabilis

ole'

1/064 Accepted: 16 Mar 2001.

B.V..

Spek, Monbulk, VIC.

ple'

1/065 Accepted: 16 Mar 2001.

B.V..

Spek, Monbulk, VIC.

Capsicum annuum var annuum convar. pomiferum Pimento

'Kapuchin'

Application No: 2000/346 Accepted: 20 Mar 2001.

Applicant: Yugen Kaisha Nihon Noken. Agent: F B Rice & Co, Balmain, NSW.

Chamelaucium hybrid Waxflower

'WX01'

Application No: 2000/046 Accepted: 16 Mar 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

'WX10'

Application No: 2001/028 Accepted: 16 Mar 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

'WX11'

Application No: 2000/049 Accepted: 16 Mar 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

'WX13'

Application No: 2001/029 Accepted: 16 Mar 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

'WX14'

Application No: 2000/050 Accepted: 16 Mar 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

'WX15'

Application No: 2000/051 Accepted: 16 Mar 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

'WX8'

Application No: 2001/027 Accepted: 16 Mar 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

Chamelaucium megalopetalum x Chamelaucium uncinatum

Waxflower

'Crystal Pearl'

Application No: 2001/022 Accepted: 5 Mar 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

Chamelaucium uncinatum Geraldton Wax

'WX03'

Application No: 2000/047 Accepted: 16 Mar 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

'WX05'

Application No: 2000/048 Accepted: 16 Mar 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

Chrysanthemum hybrid Chrysanthemum

'UoM 92-333-2'

Application No: 2000/338 Accepted: 1 Mar 2001. Applicant: **Regents of the University of Minnesota**. Agent: **Anthony Tesselaar Plants Pty Ltd**, Silvan, VIC.

'UoM 95-105-6'

Application No: 2000/340 Accepted: 1 Mar 2001. Applicant: **Regents of the University of Minnesota**. Agent: **Anthony Tesselaar Plants Pty Ltd**, Silvan, VIC.

'UoM 95-157-6'

Application No: 2000/339 Accepted: 1 Mar 2001. Applicant: **Regents of the University of Minnesota**. Agent: **Anthony Tesselaar Plants Pty Ltd**, Silvan, VIC.

Cicer arietinum Chickpea

'Howzat'

Application No: 2000/330 Accepted: 6 Feb 2001.

Applicant: Department of Agriculture for and on behalf of the State of New South Wales, Orange, NSW and Grains Research and Development Corporation, Barton, ACT.

Agent: Australian Agricultural Commodities, Wee Waa, NSW.

Citrus reticulata hybrid Mandarin

'Empress'

Application No: 2001/066 Accepted: 16 Mar 2001. Applicant: **Francis Hugh Robinson** and **Allison Geraldine Robinson**, Gayndah, QLD.

Citrus reticulata x Citrus sinensis Mandarin

'Code 66-75'

Application No: 2001/067 Accepted: 20 Mar 2001. Applicant: **Craig Robert Pressler**, Emerald, QLD.

Codiaeum variegatum Variegated Croton

'Cleopatra'

Application No: 2001/032 Accepted: 27 Feb 2001. Applicant: **Russell & Sonya Hart**, Mackenzie, QLD.

'GRU CO 0001'

Application No: 2001/012 Accepted: 5 Feb 2001. Applicant: Vulcan Plants Produktontwikkeling B.V.. Agent: Futura Promotions Pty Ltd, Wellington Point, OLD.

Coleonema pulchrum Confetti Bush

'White Gold'

Application No: 2001/061 Accepted: 16 Mar 2001. Applicant: **Robert Bail**, Galston, NSW.

Coprosma hybrid Coprosma

'Cappuccino'

Application No: 2000/333 Accepted: 26 Feb 2001.

Applicant: Annton Nursery Ltd.

Agent: Greenhills Propagation Nursery, Tynong, VIC.

Cynodon transvaalensis x Cynodon dactylon Hybrid Bermuda Grass

'TifEagle'

Application No: 2001/062 Accepted: 16 Mar 2001.

Applicant: United States Department of Agriculture (USDA)

Agent: The State of Queensland through its Department of Primary Industries, Brisbane, QLD.

'Tift 94'

Application No: 2001/063 Accepted: 16 Mar 2001.

Applicant: United States Department of Agriculture (USDA).

Agent: The State of Queensland through its Department of Primary Industries, Brisbane, QLD.

Duranta repens Golden Dewdrop

'Sheena's Lime Glow'

Application No: 2001/036 Accepted: 21 Mar 2001.

Applicant: Unique Plants.

Agent: Redlands Nursery Pty Ltd, Redland Bay, QLD.

Ficus benjamina Weeping Fig

'Pedani'

Application No: 2001/011 Accepted: 5 Feb 2001. Applicant: **Plantenkwekerij J. van Geest B.V.**

Agent: Futura Promotions Pty Ltd, Wellington Point,

QLD.

Gazania hybrid **Gazania**

'Sugaja'

Application No: 2000/261 Accepted:14 Feb 2001. Applicant: **The University of Sydney**, Camperdown, NSW and **Protected Plant Promotions Australia Pty Ltd**, Macquarie Fields, NSW.

'Sugamo'

Application No: 2000/262 Accepted: 14 Feb 2001. Applicant: **The University of Sydney**, Camperdown, NSW and **Protected Plant Promotions Australia Pty Ltd**, Macquarie Fields, NSW.

Hordeum vulgare Barley

'B%1302'

Application No: 2001/009 Accepted: 8 Feb 2001.

Applicant: Department of Agriculture for and on behalf of the State of New South Wales, Orange, NSW and Grains Research and Development Corporation, Barton, ACT.

'CK85'

Application No: 2001/076 Accepted: 27 Mar 2001.

Applicant: **The State of Queensland through its Department of Primary Industries,** Brisbane, QLD and **Grains Research and Development Corporation**, Barton,
ACT

Leucadendron hybrid Leucadendron

'Pixv Red'

Application No: 2001/024 Accepted: 27 Feb 2001. Applicant: **Amarillo Proteas**, Nedlands, WA.

Liriope gigantea Turf Lily

'Arizona'

Application No: 2000/285 Accepted: 12 Feb 2001. Applicant: **Tony and Juna Kebblewhite**, Verrierdale, QLD.

Lolium perenne Perennial Ryegrass

'Tolosa'

Application No: 2001/025 Accepted: 15 Mar 2001. Applicant: **Agriseeds Research Limited**.

Agent: Heritage Seeds Pty Ltd, Mulgrave, VIC.

Malus prunifolia var ringo x Malus pumila var paradisiaca Apple Rootstock

'JM1'

Application No: 2001/079 Accepted: 27 Mar 2001. Applicant: National Institute of Fruit Tree Science, Ministry of Agriculture, Forestry and Fisheries. Agent: Davies Collison Cave, Melbourne, VIC.

Phaseolus vulgaris

Navy Bean

'Arwon'

Application No: 2001/005 Accepted: 6 Feb 2001.

Applicant: The State of Queensland through its Department of Primary Industries, Brisbane, QLD and Grains Research and Development Corporation, Barton, ACT.

Phaseolus vulgaris

Bean

'SB4218'

Application No: 2001/019 Accepted: 6 Feb 2001.

Applicant: Syngenta Seeds Pty Ltd, Dandenong South, VIC

Rosa hybrid

Rose

'Climbing Seduction'

Application No: 2001/016 Accepted: 27 Mar 2001.
Applicant: Nieuwesteeg Rose Nursery Pty Ltd,

Coldstream, VIC.

'Korblekaf'

Application No: 2000/315 Accepted: 5 Feb 2001.

Applicant: W Kordes' Sohne.

Agent: Treloar Roses Pty Ltd, Portland, VIC.

'Kornafiro'

Application No: 2001/014 Accepted: 5 Feb 2001.

Applicant: W Kordes' Sohne.

Agent: Treloar Roses Pty Ltd, Portland, VIC.

'Korwarpeel'

Application No: 2001/015 Accepted: 5 Feb 2001.

Applicant: W Kordes' Sohne.

Agent: Treloar Roses Pty Ltd, Portland, VIC.

Solanum rantonettii Blue Potato Bush

'CATT 1'

Application No: 2001/059 Accepted: 5 Mar 2001. Applicant: **D and M Catt Nursery**, Annangrove, NSW.

Solanum tuberosum

Potato

'Inova'

Application No: 2001/058 Accepted: 16 Mar 2001. Applicant: **Handelmaatschappij VAN RIJN bv**. Agent: **Wrightson Research**, Ballarat, VIC.

'Satu'

Application No: 2001/035 Accepted: 16 Mar 2001.

Applicant: **Boreal Plant Breeding Ltd**.

Agent: Wrightson Seeds (Australia) Pty Ltd, Ballarat, VIC.

'Sini'

Application No: 2001/033 Accepted: 16 Mar 2001.

Applicant: Boreal Plant Breeding Ltd.

Agent: Wrightson Seeds (Australia) Pty Ltd, Ballarat, VIC.

'Suvi' Applica

Application No: 2001/034 Accepted: 16 Mar 2001.

Applicant: Boreal Plant Breeding Ltd.

Agent: Wrightson Seeds (Australia) Pty Ltd, Ballarat,

VIC.

Spathiphyllum hybrid Spathiphyllum

'G2'

Application No: 2001/020 Accepted: 6 Feb 2001. Applicant: **Futura Promotions Pty Ltd**.

Agent: Wellington Point, QLD.

Syzygium paniculatum Lilly Pilly

'Orange Twist'

Application No: 2001/001 Accepted: 14 Feb 2001. Applicant: **B E Jackson & A S Soderlund**.

Agent: Southern Advanced Plants, Dromana, VIC.

Trifolium pratense

Red Clover

'Broadway'

Application No: 2001/060 Accepted: 16 Mar 2001.

Applicant: AgResearch Limited.

Agent: AgResearch Australia Limited, Drumcondra, VIC.

'Sensation'

Application No: 2001/068 Accepted: 21 Mar 2001.

Applicant: AgResearch Limited.

Agent: AgResearch Australia Limited, Drumcondra, VIC.

Trifolium subterraneum var yanninicum

Subterranean Clover

'YL012'

Application No: 2001/031 Accepted: 26 Feb 2001.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

Triticum aestivum

Wheat

'Braewood'

Application No: 2001/006 Accepted: 27 Feb 2001. Applicant: **The University of Sydney,** Camperdown, NSW

Barton, ACT.

'HS 5170'

Application No: 2001/002 Accepted: 9 Mar 2001.

Applicant: New Zealand Institute for Crop and Food Research Ltd.

and Grains Research and Development Corporation,

Agent: Heritage Seeds Pty Ltd, Mulgrave, VIC.

'K3057'

Application No: 2001/008 Accepted: 9 Feb 2001.

Applicant: Department of Agriculture for and on behalf of the State of New South Wales, Orange, NSW and Grains Research and Development Corporation, Barton, ACT.

'RP1-97-2-1'

Application No: 2001/017 Accepted: 21 Feb 2001. Applicant: **Department of Agriculture for and on behalf of the State of New South Wales**, Orange, NSW.

x*Triticosecale* **Triticale**

'Eleanor'

Application No: 2001/030 Accepted: 26 Feb 2001. Applicant: **The University of Sydney,** NSW and **Grains Research and Development Corporation**, Barton, ACT.

'PRIME322'

Application No: 2001/082 Accepted: 27 Mar 2001. Applicant: **The University of Sydney, NSW** and **Grains Research and Development Corporation**, Barton, ACT.

Zoysia japonica Zoysia Grass

'SS-300'

Application No: 2001/069 Accepted: 21 Mar 2001.

Applicant: Sod Solutions, Inc.

Agent: Walter Scattini, Kelvin Grove, QLD.

'SS-500'

Application No: 2001/070 Accepted: 21 Mar 2001.

Applicant: Sod Solutions, Inc.

Agent: Walter Scattini, Kelvin Grove, QLD.

Zoysia matrella Zoysia Grass

'Cavalier'

Brisbane, QLD.

Application No: 2001/018 Accepted: 16 Mar 2001. Applicant: **The Texas A&M University System**. Agent: **Pizzeys Patent and Trade Mark Attorneys**,

VARIETY DESCRIPTIONS

Key to definitions/symbols/words used in the detailed descriptions

* = Variety used as comparator

Agent = Australian agent acting on behalf of an

applicant (usually where application is

from overseas).

ca. = about

CPVO = Community Plant Variety Office DMRT = Duncan's Multiple Range Test

DUS = Distinctiveness, Uniformity and Stability

Hyphened colours

 A hyphen (-) between two different colours (eg. greyed-green) designates an intermediate colour between those two colours, where possible the RHS colour

chart reference is also given.

LSD = Least Significant Difference

LSD/sig = The numerical value for the LSD

(at P≤0.01) is in the first column and the level of significance between the candidate and the relevant comparator in

subsequent columns

PVJ = Plant Varieties Journal PVRO = Plant Variety Rights Office

n/a = Not available ns = Not significant

RHS = Royal Horticultural Society Colour Chart

(Chip Number). The year following RHS

indicates the edition.

std deviation = Standard deviation of the sample

syn = synonym

UPOV = International Union for the Protection of

New Plant Varieties

+ = When used in conjunction with an RHS

colour, '+' indicates a notional extension of a colour series when a precise match can not be made. It is most commonly used when the adjacent colour chip(s) are

of a different sequence

= Values followed by the same letter are not

significantly different at P≤0.01

Origin = Unless otherwise stated the female parent

of the cross precedes the male parent

S-N-K test = Student-Newman-Keuls test

(b) = Variety(s) for which PBR has been

granted

Abelia xgrandiflora Abelia

'Short & Sweet'

Application No: 1999/211 Accepted: 3 Aug 1999. Applicant: **Robert Pearce**, MacLeans Ridges, NSW.

Characteristics (Table 1, Figure 8) Plant: habit bushy, dwarf, height short, width narrow-medium. Stem: internodes very short, colour red-purple (RHS 59A). Leaf: arranged opposite and decussate, length and width medium, shape ovate, margin weakly serrate, apex acute, upper side colour darker than green (RHS 137A), lower side colour yellow-green (RHS 146B). Inflorescence: axillary or

terminal compound cyme, pedicel length short. Flower: solitary, rotate-funnelform, 5 lobed, diameter small (average 16.3mm), length short (average 14.8mm), margin entire, colour white (RHS 155D), bud yellow-green (RHS 154D) with anthocyanin weakly, greyed-purple (RHS 185D), calyx shape salverform, sepal length medium (average 6.7mm), sepal colour greyed-orange (RHS 172B) with streaks yellow-green (RHS 144B-C), inferior ovary colour yellow-green (RHS 144B-C). (Note: all RHS colour chart numbers refer to 1995 edition).

Origin and Breeding Spontaneous mutation: *Abelia* xgrandiflora 'Compacta'. Selection took place in MacLeans Ridges, NSW in 1994. Selection criteria: compact growth habit. Propagation: a number of mature stock plants were generated from this mutation through vegetative cuttings and were found to be uniform and stable. 'Short & Sweet' will be commercially propagated by vegetative cuttings from the stock plants. Breeder: Robert Pearce, MacLeans Ridges, NSW.

Choice of Comparators 'Compacta' was selected as a comparator as it represents the source material from which the new variety arose and is the most similar variety. All other *Abelia xgrandiflora* varieties have much larger growth habits or variegated foliage and were rejected as comparators.

Comparative Trial Location: Kincumber, NSW, springsummer 2000. Conditions: trial conducted open beds, plants propagated vegetatively from cuttings, rooted cuttings planted into 200 pots filled with soilless potting mix, nutrition maintained with slow release and liquid fertilisers. No pest and disease treatments were required. Trial design: fifteen pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random. One sample per plant.

Prior Applications and Sales

No prior applications. First sold in Australia in Aug 1998.

Description: Ian Paananen, Crop & Nursery Services Central Coast, NSW

Table 1 Abelia varieties

	'Short & Sweet'	*'Compacta'
PLANT HEIGHT (cm)		
mean	24.8	38.4
std deviation	3.3	5.3
LSD/sig	5.1	P≤0.01
PLANT WIDTH (cm)		
mean	47.6	78.9
std deviation	3.8	8.5
LSD/sig	7.5	P≤0.01
INTERNODE LENGTH	(mm)	
mean	17.0	25.0
std deviation	3.3	7.0
LSD/sig	6.2	P≤0.01
LEAF LENGTH (mm)		
mean	25.7	35.2

std deviation	3.4	5.6
LSD/sig	5.2	P≤0.01
LEAF LENGTH: WIDTH	H RATIO	
mean	1.9	2.8
std deviation	0.17	0.11
LSD/sig	0.16	P≤0.01
LEAF SHAPE		
	ovate	lanceolate-ovate
FLOWER DIAMETER (mm)	
mean	16.3	19.0
std deviation	1.4	0.9
LSD/sig	1.3	P≤0.01
FLOWER LENGTH (mm	n)	
mean	14.8	23.2
std deviation	2.4	1.7
LSD/sig	2.3	P≤0.01
FLOWER COLOURS (R	HS, 1995)	
main colour	white 155D	white 155D
anthocyanin	greyed-purple	greyed-purple
(intensity)	185D (weak)	185B (medium)
bud	yellow-green 154D	yellow-green 154D
sepals	greyed-orange	greyed-orange
•	172B streaked	173A streaked
	with 144B-C	with 146C-D
ovary	yellow-green	yellow-green
	144B-C	146C-D
SEPAL LENGTH (mm)		
mean	6.7	7.5
std deviation	0.6	0.6
LSD/sig	0.7	P≤0.01

Acacia cognata Bower Wattle

'UY2'

Application No: 1999/343 Accepted: 17 Dec 1999. Applicant: **Austraflora Pty Ltd,** Dixon's Creek, VIC.

Characteristics (Table 2, Figure 23) Plant: habit low spreading, medium to dense shrub, tips of branches pendulous. Stem: light grey with medium internodes. Leaf: broad linear (average 61.8 x 4mm), mature leaf colour green (RHS 139A), young leaf greyed orange (RHS 166A) tip growth greyed orange (RHS 166A). Flower: ball shaped, axillary, pedunculate, yellow (RHS 2B). (Note: All RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Open pollination followed by seedling selection: a number of *Acacia cognata* plants were planted in a plantation at Dixon's Creek, VIC in 1980. One of these exhibited a smaller, more compact habit. Seed from open pollination was germinated in 1994, and from approximately 100 seedlings, several exhibiting compact or dwarf forms were selected and grown on. 'UY2' was one of those seedlings. The seed parent whilst being much more dwarf and compact than the normal form of *Acacia cognata* differs from this candidate in being an upright shrub of 2.5

metres. Selection criteria: dwarf habit. Propagation: vegetatively through five generations. Breeder: Bill Molyneux, Dixon's Creek, VIC.

Choice of Comparators The two comparators, 'UY3' and 'Green Mist'(b) were chosen as the most similar varieties of common knowledge. 'UY3' is a sister line from the same seed batch. 'Green Mist'(b) was chosen because of its similarities in leaf length to width ratios and leaf colour. The parent was not included due to its obviously larger shrub habit. No other similar varieties of common knowledge have been identified.

Comparative Trial Location: Dixon's Creek, VIC, between Nov 1999 – Sep 2000. Conditions: trial conducted in the open air. Plants potted from 10cm tumblers into 250mm pots, in a random pattern into standard pinebark-based growing medium containing appropriate slow release fertiliser. Trial design: twelve selections of each variety in a completely randomised design. Measurements: ten measurements from each of ten plants were undertaken in a random pattern, but from the same position on each plant.

Prior Applications and Sales Nil.

Description: William (Bill) M Molyneux, Dixon's Creek, VIC.

'UY3'

Application No: 1999/393 Accepted: 23 Dec 1999. Applicant: **Austraflora Pty Ltd,** Dixon's Creek, VIC.

Characteristics (Table 2, Figure 23) Plant: habit compact, medium density. Stem: procumbent, internodes short. Leaf: narrow linear (average 35.5mm x 1.2mm), mature leaf colour green (RHS 137A), young leaf green (RHS 143B), tip growth yellow green (RHS 152A). Flower: ball shaped, axillary, pedunculate, yellow (RHS 4C). (Note: All RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Open pollination followed by seedling selection: a number of *Acacia cognata* plants were planted in a plantation at Dixon's Creek, VIC in 1980. One of these exhibited a smaller, more compact habit. Seed from open pollination was germinated in 1994, and from approximately 100 seedlings, several exhibiting compact or dwarf forms were selected and grown on. 'UY3' was one of those seedlings. The seed parent whilst being much more dwarf and compact than the normal form of *Acacia cognata* differs from this candidate in being an upright shrub of 2.5 metres. Selection criteria: dwarf habit. Propagation: vegetatively through five generations. Breeder: Bill Molyneux, Dixon's Creek, VIC.

Choice of Comparators The two comparators, 'UY2' and 'Green Mist'() were chosen as the most similar varieties of common knowledge. 'UY2' is a sister line from the same seed batch. 'Green Mist'() was chosen because of its similarities in leaf length to width ratios and leaf colour. The parent was not included due to its obviously larger shrub habit. No other similar varieties of common knowledge have been identified.

Comparative Trial Location: Dixon's Creek, VIC, between Nov 1999 – Sep 2000. Conditions: trial conducted in the open air. Plants potted from 10cm tumblers into

250mm pots, in a random pattern into standard pinebark-based growing medium containing appropriate slow release fertiliser. Trial design: twelve selections of each variety in a completely randomised design. Measurements: ten measurements from each of ten plants were undertaken in a random pattern, but from the same position on each plant.

Prior Applications and Sales Nil.

Description: William (Bill) M Molyneux, Dixon's Creek, VIC.

Table 2 Acacia varieties

	'UY3'	'UY2'	*'Green Mist'
PLANT HABI	Τ		
	procumbent	low spreading	low spreading
	shrub	shrub, tips	shrub
		pendulous	slightly weeping
PLANT DENS	ITY		
	medium	medium to dense	dense
ΡΙ ΔΝΤ ΒΡΔΝ	CHI FT: INTE	ERNODE LENG	
TL/MIT DIAM	short	medium	short
	SHOTE	mearam	SHOTE
PLANT HEIGI		months LSD (P≤	
mean	6.6 ^c	32.1 ^a	25.5 ^b
std deviation	1.9	3.7	4.8
PLANT width	(cm) at 11 mor	nths LSD (P≤0.0	1) = 15.0
mean	67.2 ^b	91.8 ^a	55.0 ^b
std deviation	9.1	21.1	6.5
LEAF LENGT	H (mm) LSD (P≤0.01) = 7.2	
mean	35.5 ^b	61.8 ^a	63.5 ^a
std deviation	13.0	8.7	6.5
LEAF WIDTH	(mm) LSD (P:	≤0.01) = 0.4	
mean	1.2 ^c	4.0^{a}	2.1 ^b
std deviation	0.3	0.6	0.3
LEAF COLOU	R (RHS, 1986)	
mature	137A	139A	137A
new growth	143B	166A	137A
tip colour	152A	166A	147A
anthocyanin in	new growth		
	absent	present	absent
FLOWER COL			
	4C	2B	2B

Means followed by the same letter are not significantly different at P \leq 0.01, Duncan's Multiple Range Test

Agapanthus inapertus x orientalis Agapanthus

'Blue Brush'

Application No: 1999/271 Accepted: 27 Sep 1999.

Applicant: Lifetech Laboratories Limited, Auckland, New Zealand.

Agent: **Avondale Nurseries Limited,** Glenorie, NSW. **Characteristics** (Table 3, Figure 7) Plant: habit arching, evergreen, height tall. Leaf: upright, arching, length long

(average 502mm), width medium (average 42.2mm), variegation absent, colour yellow-green (RHS 146A-147A) glossiness medium. Inflorescence: umbel, flower count high, peduncle length tall, diameter medium, colour yellowgreen (RHS 146A), speckling present. Flower: mediumlate, pedicel medium, diameter medium (average 31.4mm), length medium (average 43.7mm), corolla lobes usually 6, immature flower bud violet-blue (RHS 94C), mature flower bud violet-blue (RHS 94B), inner perianth main colour violet-blue (RHS 94D) with stripe violet-blue (RHS 94B) with white (RHS 155D) near anterior margin of lobe, pedicel yellow-green (RHS 146A), pollen greyed-yellow (RHS 160A), filament, stigma and style violet-blue (RHS 94D) fading to white (RHS 155D) at base, fragrance weak, infrequent. (Note: all RHS colour chart numbers refer to 1995 edition).

Origin and Breeding Open pollination followed by seedling selection: seed parent *A. inapertus* hybrid and pollen parent un-named *A. orientalis*. The seed parent was characterised by deciduous growth habit, fewer flowers per inflorescence and erect flowers. The pollen parent was the standard white flowering form characterised by early flowering, low flower count and evergreen non-variegated leaves. Open pollinated seed was sown in 1988 and final selection took place in Taranaki, New Zealand in 1996. Selection criteria: flower number per inflorescence, colour and fragrance. Propagation: vegetative divisions and subsequent micropropagation were found to be uniform and stable. 'Blue Brush' will be commercially propagated by micropropagation from the original divisions. Breeder: Vance Hooper, Taranaki, New Zealand.

Choice of Comparators Agapanthus inapertus, A. orientalis (both blue and white forms), 'Lavender Haze' and 'Glen Avon' were initially considered as comparators. A. orientalis white was rejected due to differing flower colour. A. inapertus was rejected due to deciduous growth habit and lower flower count A. orientalis standard blue form was chosen because it is closely related to the original source material from which the variety was selected and has similar flower colours. 'Lavender Haze' and 'Glen Avon' were included as they have the most similar combination of flower colour, number and growth habit. No other similar varieties of common knowledge have been identified.

Comparative Trial Location: Glenorie, NSW, Dec 1999-Dec 2000. Conditions: trial conducted in the open, plants propagated from divisions, planted into 300mm pots filled with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten to fifteen pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random.

Prior Applications and Sales

Country Year Current Status Name Applied New Zealand 2000 Applied 'Blue Brush'

First sold in New Zealand in Nov 1998.

Description: Ian Paananen, Crop & Nursery Services, Central Coast, NSW.

Agapanthus orientalis Agapanthus

'Snow Cloud' syn Summer Pearl

Application No: 1998/146 Accepted: 7 Sep 1998.

Applicant: Lifetech Laboratories Limited, Auckland,

New Zealand.

Agent: Avondale Nurseries Limited, Glenorie, NSW.

Characteristics (Table 3, Figure 5) Plant: habit erect, evergreen, height medium-tall. Leaf: upright, distally arching, length long (average 466mm), width medium (average 32.8mm), variegation absent, colour yellow-green (RHS 146A-147A) glossiness medium. Inflorescence: umbel, flower count high, peduncle length medium-tall, diameter medium, colour yellow-green (RHS 146A), speckling absent. Flower: medium-late, pedicel medium, diameter medium (average 32.5mm), length medium (average 35.9mm), corolla lobes usually 6, flower bud white (RHS 155D), inner and outer perianth main colour white (RHS 155D), stripe absent, pedicel yellow-green (RHS 144A), pollen yellow-orange (RHS 17A), filament, stigma and style white (RHS 155D), fragrance weak, infrequent. (Note: all RHS colour chart numbers refer to 1995 edition).

Origin and Breeding Open pollination followed by seedling selection: seed parent and pollen parent un-named *A. orientalis*. The parents were standard white forms characterised by early flowering, low flower count and green non-variegated leaves. Open pollinated seed was sown in 1988 and selection took place in Taranaki, New Zealand in 1990. Selection criteria: flower number per inflorescence and fragrance. Propagation: vegetative divisions and subsequent micropropagation were found to be uniform and stable. 'Snow Cloud' will be commercially propagated by micropropagation from the original divisions. Breeder: Vance Hooper, Waitara, New Zealand.

Choice of Comparators Agapanthus orientalis standard white form was chosen because it is the original source material from which the variety was selected and has the most similar combination of flower colour and growth habit. No other similar varieties of common knowledge have been identified.

Comparative Trial Location: Glenorie, NSW, Dec 1999-Dec 2000. Conditions: trial conducted in the open, plants propagated from divisions, planted into 300mm pots filled with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten to fifteen pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random.

Prior Applications and Sales

1 1101 11ppineutions una suites						
Country	Year	Current Status	Name Applied			
New Zealand	1997	Granted	'Snow Cloud'			
South Africa	1998	Granted	'Snow Cloud'			
Japan	1998	Applied	'Snow Cloud'			

First sold in New Zealand in Oct 1997. First Australian sale 1999

Description: Ian Paananen, Crop & Nursery Services, Central Coast, NSW.

'Regal Beauty'

Application No: 1999/273 Accepted: 27 Sep 1999.

Applicant: R J & D M L Wood, New Plymouth, New

Zealand.

Agent: Avondale Nurseries Limited, Glenorie, NSW.

Characteristics (Table 3, Figure 6) Plant: habit arching, evergreen, height tall. Leaf: upright, length long (average 559mm), width large (average 49.9mm), variegation absent, colour yellow-green (RHS 146A-147A) glossiness medium. Inflorescence: umbel, secondary pedicel branching present (average 13 per inflorescence), flower count high, peduncle length long, diameter large, colour yellow-green (RHS 146A), speckling absent. Flower: medium-late, pedicel medium, diameter medium (average 37.4mm), length large (average 46.3mm), corolla lobes usually 6, immature flower bud violet-blue (RHS 94D), mature flower bud violet-blue (RHS 93B), inner perianth main colour violet-blue (RHS 94B) with stripe violet-blue (RHS 93A) with white (RHS 155D) near anterior margin of lobe, pedicel yellow-green (RHS 146A), pollen greyedyellow (RHS 160A), filament, stigma and style violet-blue (RHS 94B) fading to white (RHS 155D) at base, fragrance absent. (Note: all RHS colour chart numbers refer to 1995 edition).

Origin and Breeding Open pollination followed by seedling selection: parents un-named *A. orientalis* blue form characterised by early flowering, low flower count and evergreen non-variegated leaves. Open pollinated seed was sown in 1991 and final selection took place in New Plymouth, New Zealand in 1995. Selection criteria: large inflorescence size, flower colour. Propagation: vegetative divisions and subsequent micropropagation were found to be uniform and stable. 'Regal Beauty' will be commercially propagated by micropropagation from the original divisions. Breeder: Ray Wood, New Plymouth, New Zealand.

Choice of Comparators Agapanthus orientalis standard blue form. 'Blue Brush', 'Glen Avon' and 'Lavender Haze' were initially considered as comparators. A. orientalis standard blue form was chosen because it is closely related to the original source material from which the variety was selected and has similar flower colours. 'Blue Brush', 'Glen Avon' and 'Lavender Haze' were excluded as they have a much lighter violet-blue flower colour. As the trial included these varieties, comparison can be made in the comparative tables. No other similar varieties of common knowledge have been identified.

Comparative Trial Location: Glenorie, NSW, Dec 1999-Dec 2000. Conditions: trial conducted in the open, plants propagated from divisions, planted into 300mm pots filled with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten to fifteen pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random.

Prior Applications and Sales

Country Year Current Status Name Applied New Zealand 2000 Applied 'Regal Beauty'

First sold in New Zealand in Nov 1998.

Description: Ian Paananen, Crop & Nursery Services, Central Coast, NSW

'Lavender Haze'

Application No: 1999/272 Accepted: 27 Sep 1999.

Applicant: R J & D M L Wood, New Plymouth, New

Zealand.

Agent: Avondale Nurseries Limited, Glenorie, NSW.

Characteristics (Table 3, Figure 7) Plant: habit erect, evergreen, height tall. Leaf: upright, length long (average 507mm), width medium (average 32.7mm), variegation absent, colour yellow-green (RHS 146A-147A) glossiness medium. Inflorescence: umbel, flower count high, peduncle length medium, diameter large, colour vellow-green (RHS 146A), speckling absent. Flower: late, pedicel medium, diameter medium (average 38.7mm), length medium (average 38.9mm), corolla lobes usually 6, immature flower bud violet-blue (RHS 94C), mature flower bud violet-blue (RHS 93C), inner perianth main colour violet-blue (RHS 92C) with stripe violet-blue (RHS 91A-92A) with white (RHS 155D) near anterior margin of lobe, pedicel yellowgreen (RHS 145A), pollen greyed-yellow (RHS 160A), filament, stigma and style violet-blue (RHS 92C) fading to white (RHS 155D) at base, fragrance absent. (Note: all RHS colour chart numbers refer to 1995 edition).

Origin and Breeding Open pollination followed by seedling selection: parents un-named *A. orientalis* blue form characterised by early flowering, low flower count and evergreen non-variegated leaves. Open pollinated seed was sown in 1991 and final selection took place in New Plymouth, New Zealand in 1995. Selection criteria: large inflorescence size, flower colour. Propagation: vegetative divisions and subsequent micropropagation were found to be uniform and stable. 'Lavender Haze' will be commercially propagated by micropropagation from the original divisions. Breeder: Ray Wood, New Plymouth, New Zealand.

Choice of Comparators Agapanthus orientalis standard blue form, 'Blue Brush' and 'Glen Avon' were initially considered as comparators. A. orientalis standard blue form was chosen because it is closely related to the original source material from which the variety was selected and has the most similar flower colours. 'Blue Brush', 'Glen Avon' were included as they have the most similar combination of flower colour, number and growth habit. No other similar varieties of common knowledge have been identified.

Comparative Trial Location: Glenorie, NSW, Dec 1999-Dec 2000. Conditions: trial conducted in the open, plants propagated from divisions, planted into 300mm pots filled with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten to fifteen pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random.

Prior Applications and Sales

No prior applications. First sold in New Zealand in Nov 1998.

Description: Ian Paananen, Crop & Nursery Services, Central Coast, NSW.

'Glen Avon' syn Summer Blue

Application No: 1998/147 Accepted: 7 Sep 1998.

Applicant: Lifetech Laboratories Limited, Auckland,

New Zealand.

Agent: Avondale Nurseries Limited, Glenorie, NSW.

Characteristics (Table 3, Figure 7) Plant: habit erectarching, evergreen, height medium-tall. Leaf: upright, arching, length long (average 465mm), width medium (average 44.1mm), variegation absent, colour yellow-green (RHS 146A) glossiness dull. Inflorescence: umbel, flower count high, peduncle length medium-tall, diameter medium, colour yellow-green (RHS 146A), speckling absent. Flower: medium-late, pedicel medium, diameter medium (average 34.2mm), length medium (average 41.8mm), corolla lobes usually 6, immature flower bud violet-blue (RHS 91D) with green (RHS 144A), mature flower bud violet-blue (RHS 91C), inner perianth main colour violetblue (RHS 92D) with stripe violet-blue (RHS 91A) with white (RHS 155D) near anterior margin of lobe, pedicel yellow-green (RHS 144A), pollen greyed-yellow (RHS 160A), filament, stigma and style violet-blue (RHS 92D) fading to white (RHS 155D) at base, fragrance weak, infrequent. (Note: all RHS colour chart numbers refer to 1995 edition).

Origin and Breeding Open pollination followed by seedling selection: seed parent and pollen parent un-named *A. orientalis*. The parents were standard blue forms characterised by early flowering, low flower count and green non-variegated leaves. Open pollinated seed was sown in 1988 and selection took place in New Plymouth, New Zealand in 1991. Selection criteria: flower number per

inflorescence and fragrance. Propagation: vegetative divisions and subsequent micropropagation were found to be uniform and stable. 'Glen Avon' will be commercially propagated by micropropagation from the original divisions. Breeder: Alan D Gray, New Plymouth, New Zealand.

Choice of Comparators Agapanthus orientalis standard blue form was chosen because it is the original source material from which the variety was selected. 'Lavender Haze' and 'Blue Brush' have the most similar combination of flower colour, number and growth habit. No other similar varieties of common knowledge have been identified.

Comparative Trial Location: Glenorie, NSW, Dec 1999-Dec 2000. Conditions: trial conducted in the open, plants propagated from divisions, planted into 300mm pots filled with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten to fifteen pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random.

Prior Applications and Sales

Country	Year	Current Status	Name Applied
New Zealand	1997	Granted	'Glen Avon'
Japan	1998	Applied	'Glen Avon'
South Africa	1998	Granted	'Glen Avon'

First sold in New Zealand in Oct 1997. First Australian sale 1999.

Description: Ian Paananen, Crop & Nursery Services, Central Coast, NSW.

Table 3 Agapanthus varieties

	'Snow Cloud	' 'Glen Avon	'Blue Brush'	'Lavender Haze'	'Regal Beauty'	* A orientalis Blue form	* A orientalis White form
PLANT HEIGHT	(cm) LSD (P≤0.01) = 12.1					
- maximum includ	ding inflorescence						
mean	105 b	108 b	139 ^a	86 ^c	128 ^a	112 b	100 b
std deviation	7.5	10.7	7.5	14.6	9.9	9.9	14.8
FOLIAR HEIGHT	Γ (cm) LSD (P≤0.0	1) = 7.1					
- maximum with 1	natural leaf position	n and excluding					
mean	54.5 acd	54.5 bcd	62.9 ^a	62.2 ^a	52.4 d	51.7 ^d	43.6 ^e
std deviation	7.4	7.4	5.1	4.4	6.0	9.2	6.8
LEAF ATTITUDE	 E						
	erect	arching	arching	erect	arching	erect- arching	erect
	(mm) LSD (P≤0.01						
 from junction of 	peduncle and large						1
mean	466 ^a	465 ^a	502 ^a	507 ^a	559 ^a	479 ^a	375 b
std deviation	42.1	59.6	46.3	83.5	50.2	85.2	51.6
LEAF WIDTH (m	nm) LSD (P≤0.01)	= 8.6					
 widest point of s 	same leaf as for len	gth measure					
mean	32.8 b	44.1 ab	42.2 ^{ab}	32.7 b	49.9 ^a	41.2 ^{ab}	38.2 ^{ab}
std deviation	3.0	4.7	4.8	11.4	12.3	8.5	6.1
LEAF COLOUR ((RHS 1995)						
	146A-147A	146A(dull)	146A-147A	146A-147A	146A-147A	146A-147A	146A-147A

INFLORESCENCE: FREQUENCY OF SECONDARY BRANCHING OF PEDICELS

- as in a compound up	•	JF SECONDAR	Y BRANCHIN	G OF PEDICEI	_5		
– as in a compound in	very low	very low	very low	very low	high	very low	very low
INFLORESCENCE D		n) LSD (P≤0.01) = 23.2				
– primary inflorescen	ce 170 ^e	210 ^c	192 a	261 b	287 ^a	211 ^c	234 bc
mean							
std deviation	10.2	26.1	15.6	18.3	23.9	23.9	25.1
NUMBER OF FLOW – primary inflorescence		ORESCENCE I	LSD (P≤0.01) =	89.2			
mean	255 be	254 be	300 be	234 ^{ce}	452 a	131 ^{cd}	131 d
std deviation	57.5	63.5	99.6	55.0	133.1	52.0	45.3
PEDUNCLE LENGT		(0.01) = 10.3					
 primary inflorescene 		01.0	101 9	51 5 d	105 4 h	05.1.6	or o cd
mean	89.3 ^c	91 °	121 ^a	71.7 d	107.4 b	95.1 ^c	81.8 cd
std deviation	5.5	10.3	6.6	11.5	7.1	9.4	12.7
PEDUNCLE DIAME	` '	, ,					
 primary inflorescene mean 	13.6 b	15.1 b	13.3 b	23.1 ^a	20.2 a	11.9 b	14.3 b
mean std deviation	13.6	2.3	1.5	9.7	4.8	11.9 5	2.2
sia aeviation	1.1	2.3	1.3	7.1	4.0	1.3	۷.۷
PEDUNCLE COLOU	TR (RHS 1995)						
	146A	146A	146A	146A	146A	146A	146A
PEDUNCLE SPECKI	LING						
TES CIVEES STEEL	absent	absent	present	absent	absent	absent	absent
ELOWED DIAMETE	D (mm) I CD (D	<0.01) = 5.5					
FLOWER DIAMETE		$\leq 0.01) = 5.5$					
- widest cross-section	32.5 b	34.2 b	31.4 b	38.7 b	37.4 b	48.1 ^a	45.8 ^a
mean				2.9	5.0		
std deviation	2.7	3.6	2.4	2.9	5.0	8.3	6.7
FLOWER LENGTH	(mm) LSD (P≤0.	.01) = 3.1					
- from base of ovary		1	•			1	1
mean	35.9 d	41.8 bc	43.7 ^{ab}	38.9 ^{cd}	46.3 ^a	45.4 ^{ab}	42.3 abc
std deviation	1.7	3.8	1.7	2.1	1.8	4.0	3.4
PERIANTH LOBE L			2.5				
- standard petal, from	base of incision 27.2 b	26.6 b	26.6 b	30.2 a	32.1 ^a	32.4 a	32.0 a
mean std deviation		1.8				1.7	
std deviation	3.9	1.0	1.5	1.2	1.3	1.7	3.0
FLOWER COLOURS Flower bud:	S (RHS, 1995)						
immature	white	violet-blue	violet-blue	violet-blue	violet-blue	violet-blue	white
	155D	91D &	94C	94C	94D	91A-94B	155D
		green 144A					
mature	white	violet-blue	violet-blue	violet-blue	violet-blue	violet-blue	white
	155D	91C	94B	93C	93B	94B	155D
Inner perianth:							
main colour	white	violet-blue	violet-blue	violet-blue	violet-blue	violet-blue	white
	155D	92D	94D	92C	94B	94C-D	155D
stripe	absent	violet-blue	violet-blue	violet-blue	violet-blue	violet-blue	absent
		91A*	94B*	91A-92A*	93A*	94B*	
* In the violet-blue flo	owers there is so	me white 155D	between the str	ipe and the ante	rıor margin of t	he lobe	
Outer perianth:	white	violet blue	violet blue	violet blue	violet-blue	violet blue	white
main colour	white	violet-blue	violet-blue	violet-blue		violet-blue	white
atuin a	155D	92D	94C	92B	94B	94C-D	155D
stripe	absent	violet-blue 91B-C	violet-blue 94A-B (weak)	violet-blue 91A-92A	violet-blue 93A	violet-blue 94B (weak)	absent
			D (Would)			2 ("Cuit)	
pollen				greyed-yellow			
	17A	160A	160A	160A	160A	160A	17A

Table 3 continued

filament, stigma &	style white 155D	violet-blue 92D base fade to white	violet-blue 94D base fade to white	violet-blue 92C base fade to white	violet-blue 94B base fade to white	violet-blue 94C-D base fade to white	white 155D
PEDICEL LENGT	, ,		:_				
 newly opened flomean 	35.6 e	of blooms at antr	45.0 de	73.6 ^{ab}	79.8 ^a	53.9 cd	65.0 bc
std deviation	3.8	14.4	6.8	8.0	11.3	10.3	12.7
PEDICEL COLOU	JR (RHS 1995)						
	144A	144A	146A	145A	146A	146A	144B
FLOWERING SEA	ASON						
- 50% of flowers of	pened at Glenor	ie, NSW					
	week 51	week 50	week 50	week 52	week 51	week 50	week 49

Mean values followed by the same letter are not significantly different at P≤0.01 according to an S-N-K test.

Alstroemeria hybrid Alstroemeria, Peruvian Lily

'Kodelight' syn Inca Delight

Application No: 1998/029 Accepted: 7 Jul 1998.

Applicant: Konst Alstroemeria B.V., Nieuwveen, The

Netherlands.

Agent: Maxiflora Pty Ltd, Monbulk, VIC.

Characteristics (Table 4, Figure 4) Plant: stem length medium, stem thickness very thin, density of foliage medium. Leaf: shape narrow elliptic, longitudinal axis of blade recurved, length short to medium, width narrow. Inflorescence: umbel branch number few, length medium to long, pedicel length medium. Flower: colour red purple, size medium, tepal spread broad; outer tepal, shape broad obovate, depth of emargination medium, stripes absent, colour red purple RHS 60B at apex, RHS 63B at margins and base; inner lateral tepals, shape elliptic, colour yellow RHS 9A (RHS 13A) at centre and margins, red purple RHS 63B at apex and base, stripes medium; inner median tepal, yellow colour present, stripes present. Stamens: filament colour pink, spots absent; anther colour greenish. Ovary: anthocyanin weak; style pink, stigma pink, spots absent. (Note: data in parenthesis denotes Dutch observations, all RHS numbers referred to in local observation were based on the 1986 edition.)

Origin and Breeding Controlled pollination: seed parent 88-185-1 (butterfly type) x pollen parent pink butterfly type in a planned breeding program at the applicant's nursery at Nieuwveen, The Netherlands. Both parents are proprietary breeding lines developed by the applicant. Selection criteria: from this cross, 'Kodelight' was chosen on the basis of flower characteristics and dwarf growth habit. Propagation: a number of mature stock plants were generated from the original seedling by tissue culture through 10 generations to confirm uniformity and stability. 'Kodelight' will be commercially propagated by tissue culture. Breeder: Konst Alstroemeria BV, Nieuwveen, The Netherlands.

Choice of Comparators 'Delta' (PVJ 12.2) and 'Stapripal' (PVJ 13.1) were considered as similar varieties

of common knowledge based on previous descriptions in the *Plant Varieties Journal* and were chosen because both are dwarf varieties with similarities in flower colour. 'Delta' is a variety from the same breeding programme.

Comparative Trial Comparisons of most of the characteristics are based on Dutch trials, which were assessed under conditions of controlled environment in glasshouses. Characteristics of the comparators are derived from previous descriptions in the *Plant Varieties Journal*. Detailed flower descriptions of the candidate variety are based on plants growing in 200mm pots in a standard soilless potting mixture under open ambient conditions in Monbulk, VIC. Flowers from these plants were assessed in Jan 1999 at Rye, VIC.

Prior Applications and Sales

Country Year Current status Name Applied The Netherlands 1997 Granted 'Kodelight'

Description: David Nichols, Rye, VIC.

Table 4 Alstroemeria varieties

	'Kodelight'	*'Delta'	*'Stapripal'
STEM CHARA	CTERISTICS		
length	medium	short	very short
thickness	very thin	thin	very thin
density of folias	ge		
	medium	dense	dense to very dense
LEAF CHARA	CTERISTICS		
length	short to medium	medium	very short
width	narrow	narrow	narrow
shape of blade	narrow	narrow	elliptic to
	elliptic	elliptic	ovate
longitudinal axi	s of blade		
	recurved	straight	straight
INFLORESCEI number of umb		CTERISTICS	
	few	medium	very few

length of umbels		chout	your about to
	medium to long	short	very short to short
pedicel length	medium	long	short
FLOWER CHA	RACTERISTIC	CS	
main colour	red purple	red purple	red purple
size	medium	small	medium
spread of tepals	broad	small to medium	medium
OUTER TEPAL	CHARACTER	RISTICS	
shape of blade	broad	elliptic	broad
shape of blade	obovate	cimpuic	obovate
depth of emargin			0001400
	medium	shallow	shallow to
			medium
main colour (RF	HS)		
`	60B,63B	64C-64D,11C	58B-58C
stripes	absent	present	absent
number of stripe	es	•	
	absent	few	absent
INNER LATER	AL TEPAL CH	IARACTERIST	TICS
shape of blade	elliptic	obovate	elliptic
yellow colour (F	•	0007400	empute.
jenow eorour (1	9A	9B	9A
number of stripe		,_	
	medium	few	few to medium
stripe thickness	small to	small	large
1	medium		C
DAMED MESTA	N. WEDAL CH	A D A CITEDICITY	
INNER MEDIA			
yellow colour	present	present	present
stripes	present	present	present
OTHER FLOW	ER CHARACT	ERISTICS	
filament colour	pink	red purple	pink
filament spots	absent	absent	absent
anther colour	greenish	brownish	red brown
style colour	pink	pink	green white
stigma colour	pink	pink	green white
spots on stigma	absent	present	absent
anthocyanin in o			
•	weak	medium to	weak to
	Weat		mean to

'Komolight' syn Inca Moonlight

Application No: 1998/194 Accepted: 3 May 1999.

Applicant: Konst Alstroemeria B.V., Nieuwveen, The

Netherlands.

Agent: Maxiflora Pty Ltd, Monbulk, VIC.

Characteristics (Table 5, Figure 3) Plant: stem length medium, stem thickness thin, density of foliage medium. Leaf: shape narrow elliptic, longitudinal axis of blade straight, length medium, width medium. Inflorescence: umbel branch number many, length short to medium, pedicel length very long. Flower: colour orange, size small to medium, tepal spread medium; outer tepal, shape obovate, depth of emargination very shallow, stripes absent, colour yellow orange RHS 20B with prominent green tip at apex 22B at margins and orange RHS 29B at centre and base; inner lateral tepals, shape elliptic, colour yellow orange at centres and margins and pale pink at base. stripes few; inner median tepal, yellow orange colour present, stripes present. Stamens: filament pink, spots absent; anther colour yellow. Ovary: anthocyanin strong to very strong; style pink, stigma pink, spots absent. (Note: all RHS numbers referred to in local observation were based on the 1986 edition.)

Origin and Breeding Controlled pollination: result of inbreeding of breeding line 91-116-1 (a short butterfly type) in a planned breeding program at the applicant's nursery at Nieuwveen, The Netherlands. The parent is a proprietary breeding line developed by the applicant. Selection criteria: from this cross 'Komolight' was chosen on the basis of flower characteristics and dwarf growth habit. Propagation: a number of mature stock plants were generated from the original seedling by tissue culture through 10 generations to confirm uniformity and stability. 'Komolight' will be commercially propagated by tissue culture. Breeder: Konst Alstroemeria BV, Nieuwveen, The Netherlands.

Choice of comparator 'Amazon' (PVJ 12.2) and 'Orange Delight (PVJ 7.2) were considered as similar varieties of common knowledge based on previous descriptions in the Plant Varieties Journal. 'Amazon' was chosen because it is a dwarf variety from the same breeding programme having some orange colouring. 'Orange Delight' was chosen because of similarities in flower colour.

Comparative Trial Comparisons of most of the characteristics are based on Dutch trials, which were assessed under conditions of controlled environment in glasshouses. Characteristics of the comparators are derived from previous descriptions in the *Plant Varieties Journal*. Detailed flower descriptions of the candidate variety are based on plants growing in 200mm pots in a standard soilless potting mixture under open ambient conditions in Monbulk, VIC. Flowers from these plants were assessed in Jan 1999 at Rye, VIC.

Prior Applications and Sales

Year Current status Name Applied The Netherlands 1998 Granted 'Komolight'

Description: David Nichols, Rye, VIC.

Table 5 Alstroemeria varieties

	'Komolight'	*'Amazon'	*'Orange Delight'
STEM CHARA	CTERISTICS		
length	medium	short	tall
thickness	thin	thin	thick
density of foliag n/a	ge	medium	sparse to medium
LEAF CHARA	CTERISTICS		
length	medium	medium	long
width	medium	medium	very broad
shape of blade	narrow ellipti	c narrow elliptic	en/a
longitudinal axi	s of blade	•	
_	straight	straight	n/a
INFLORESCE	NCE CHARAC	TERISTICS	
number of umb	el branches		
	many	medium to many	medium to many

Table 5 continued

length of umbels	S		
	short to	short	long
	medium		1
pedicel length	very long	medium	long
FLOWER CHA	RACTERISTIC	CS	
main colour	orange	orange red	orange
size	small to	small	large
	medium		
spread of tepals	medium	medium	medium to
			broad
OUTER TEPAL	CHARACTE	RISTICS	
shape of blade		obovate	broad obovate
depth of emargin			
- F Ciliangii	very shallow	very shallow	n/a
main colour (RF	-		
(111	20B, 22B,	42A, 24C	25A, 169D
	29B	,	- ,
stripes	absent	absent	present
number of stripe			•
	absent	absent	few
INNER LATER	AL TEPAL CH	HARACTERIS'	ΓICS
shape of blade	elliptic	elliptic	elliptic
yellow colour (F	RHS)		
	21B	5A	21A, 23A
number of stripe	es		
	few	few to	medium
		medium	
stripe thickness	small	small to	small to
		medium	medium
INNER MEDIA	N TEPAL CH	ARACTERIST	ICS
yellow colour	present	present	n/a
stripes	present	present	n/a
OTHER ELOW	ED CILADACT	CEDICTICS	
OTHER FLOW			multicalaur-
filament colour	pink	red	multicoloured
			salmon
£1	-14	-1	/
filament spots	absent	absent	n/a
anther colour	yellow	brownish	red purple
anther colour style colour	yellow pink	brownish pink	red purple light purple
anther colour style colour stigma colour	yellow pink pink	brownish pink pink	red purple light purple orange yellow
anther colour style colour stigma colour spots on stigma	yellow pink pink absent	brownish pink	red purple light purple
anther colour style colour stigma colour	yellow pink pink absent ovary	brownish pink pink absent	red purple light purple orange yellow absent
anther colour style colour stigma colour spots on stigma	yellow pink pink absent	brownish pink pink	red purple light purple orange yellow

Anthurium hybrid Flamingo Flower

'Antinkeles' syn Pink Champion

Application No: 2001/013 Accepted: 6 Feb 2001. Applicant: **Anthura B.V.**, Bleiswijk, The Netherlands. Agent: **W & E Sieverding Wholesale Nursery**, Kemps Creek, NSW.

Characteristics (Figure 13) Plant: size medium, perennial. Leaf blade: length short, width narrow to medium, ovate, lobes present, incurved but not touching, angle of distal part acute, tip acuminate, upper side medium to dark green intensity, blistering weak to medium (weak). Petiole: length short to medium (short). Peduncle: length short to medium,

thickness thin to medium, intensity of green colour of middle part medium, anthocyanin colouration weak to medium (weak). Spathe: position compared to leaves slightly above, size small to medium, broad ovate, lobes present, relative position of lobes free, distal part rounded, tip acuminate, main colour of upper side rose pink ca. RHS 52B (RHS 54A), main colour of lower side ca. RHS 58D (RHS 54B), glossiness medium, weak blistering, shape in cross section of middle zone concave, angle of distal part to the peduncle obtuse, distance between spadix and sinus very short. Spadix: short to medium length, width at the middle medium, rolling absent, curvature of longitudinal axis weakly incurved to straight, tapering towards the top medium, main colour of basal and distal part shortly before dehiscence of anthers red purple, main colour of basal and distal_parts shortly after dehiscence of anthers light purple. Flowering: early. (Data in parenthesis based on local observation, all RHS colour chart number used in local observation is from 1986 edition.).

Origin and Breeding Controlled pollination: seed parent 'Sweetheart Cherry' x pollen parent 93-372-02 in a planned breeding program. 'Pink Champion' differs from the maternal parent 'Sweetheart Cherry' having a shorter leaf blade and from the unnamed pollen parent (breeding line) in the colour of the upper side of the spathe which is rose pink. Selection criteria: pink-red flower colour. Propagation: tissue culture. Breeder: J van Dyk and NAM van Reismalen, Anthura B.V., Bleiswijk, The Netherlands.

Choice of Comparators The qualified person considers that 'Sweet Dream' has similarity to 'Antinkeles' syn Pink Champion in spathe size and colouration. However, 'Sweet Dream' spathe has RHS 54C upper side with white streaks, RHS 56D lower side and spadix colouration RHS 47A. 'Champion' was considered as it exhibits a similar growth habit but has a white spathe as has 'Arena' but it has an orange spathe. The seed parent 'Sweetheart Cherry' was not considered for reasons stated above.

Comparative Trial The detailed description published herein is based on CPVO Report ANM 394 dated 5 Jan 1999 and local observations made in Kemps Creek, NSW in March 2001.

Prior Applications and Sales

Country	Year	Status	Variety Name
EEC	1999	Granted	'Antinkeles'
USA	2000	Applied	'Pink
			Champion'

First sold in The Netherlands in Mar 1998 and first Australian sale in Sep 2000.

Description: Mike Barrett and Associates, Beecroft, NSW.

Avena sativa Oats

'TAMO 397'

Application No: 2000/298 Accepted: 30 Nov 2000.

Applicant: The Texas A & M University System, College

Station, TX, USA.

Agent: Pacific Seeds Pty Ltd, Toowoomba, QLD.

Characteristics (Table 6, Figure 42) Plant: semi-prostrate, medium height (mean 117.7cm). Leaf: no pubescence on margins of leaf below flag leaf, no pubescence of sheaths on lower leaves. Flag leaf: narrow (mean 1.97cm), medium length (mean 20.2cm), medium frequency of plants with recurved flag leaves. Stem: strong intensity of hairs on top node. Panicles: sub-unilateral branch orientation with semi-erect attitude, spikelet pendulous. Glume: glaucosity weak, length long. Primary grain: glaucosity absent, long yellow lemma, hairs present on back of lemma, medium length hairs on base of primary grain, rachilla of medium width and length, awns absent or very few. Maturity: early.

Origin and Breeding Plant selection: 'TAMO397' was selected from 'TAMO386' as a leaf rust resistant variant that remained in 'TAMO386' when 99% of the plants were defeated by a new race of crown rust in Southern Texas in the spring of 1991. A total of 5940 panicles were selected from resistant plants; following two additional cycles of reselection for crown and stem rust resistance, progenies from 17 individual panicle selections of 32 selected in the previous year were combined to provide the breeders seed. The final selection was made in 1994. Selection criteria: evaluated for leaf and stem rust resistance in Texas, USA, then introduced into Australia for further rust screening and evaluation for dry matter yield, plant type and regrowth potential. Seed increases have been conducted by the Pacific Seeds Parent Seed Group. Propagation: by seed. Breeder: Dr M. E. McDaniel, Texas A & M University, College Station, TX, USA.

Choice of Comparators 'A.C. Assiniboia' (b) syn Graza 68(b), 'Enterprise' (b), 'Warrego' (b), 'Barcoo' (b) and 'Taipan' were chosen as comparators on the basis of similarity of plant type and leaf rust resistance. The original parental variety 'TAMO386' was not included because there is a clear difference in crown rust resistance as stated above.

Comparative Trial Location: two consecutive PBR trials were conducted at Charlton, Darling Downs, QLD during 1999 and 2000. Conditions: plants were raised in well fertilised, irrigated soil, the 1999 trial was sown on the 20th July and the 2000 trial was sown on the 24th April. The 1999 trial had a different generation of 'TAMO397' to that of the 2000 trial. Trial design: randomised complete block with four replications, four rows per plot, plots 8m long. Measurements: taken from 50 plants selected randomly from over 2000 plants.

Prior Applications and Sales

Country Year Current Status Name Applied USA 1997 Applied 'TAMO 397'

First sold in USA in 1997. No sales in Australia.

Description: Sueanne Langbein, Pacific Seeds Pty Ltd, Toowoomba, QLD.

'Taipan'

Application No: 2000/299 Accepted: 6 Nov 2000. Applicant: **NDSU Research Foundation,** Fargo, ND,

Agent: Pacific Seeds Pty Ltd, Toowoomba, QLD.

Characteristics (Table 6, Figure 41) Plant: semi-erect, height tall (mean 128 cm) with thick stems. Leaf: wide, no pubescence on margins of leaf below flag leaf, no pubescence of sheaths on lower leaves. Flag leaf: wide (mean 2.4 cm), medium to long (mean 21.3cm), low frequency of plants with recurved flag leaves, absence of hairs on top node. Panicles: equilateral branch orientation with semi – erect attitude, spikelet pendulous. Glume: glaucosity weak, length short. Primary grain: glaucosity absent, medium yellow lemma, hairs absent on back of lemma, medium length hairs on base of primary grain, narrow rachilla of medium length, very strong tendency to be awned. Maturity: medium.

Origin and Breeding Controlled pollination: 'Taipan' is a selection from an original cross between seed parent ND879845 and pollen parent ND890358 made at North Dakota State University, Fargo, USA. The F₁ and F₂ generations were grown in 1991. Single plants selections were made from the F₂ generation. Single panicle selections were made from the F_3 generation. F_4 generations were planted and seed from a pair of selected hill-plots was harvested in bulk to become 'Taipan'. Selection criteria: 'Taipan' has been screened for leaf rust in both North Dakota and Australia. Further field evaluation in Australia focused on dry matter yield, plant type, regrowth potential, rust resistance and emergence under warmer soils. Seed increases have been conducted by the Pacific Seeds Parent Seed Group. Propagation: by seed. Breeder: Dr Mike McMullen, Fargo, North Dakota, USA.

Choice of Comparators 'A.C. Assiniboia' (b) syn Graza 68(h), 'Enterprise' (b), 'Warrego' (b), 'Barcoo' (c) and 'TAMO 397' were chosen as comparators on the basis of similarity of plant type and leaf rust resistance. The original parental lines were not included because these are non-commercial breeding lines.

Comparative Trial Location: two consecutive PBR trials were conducted at Charlton, Darling Downs, QLD during 1999 and 2000. Conditions: plants were raised in well fertilised, irrigated soil, the 1999 trial was sown on the 20th July and the 2000 trial was sown on the 24th April. The 1999 trial had a different generation of 'Taipan' to that of the 2000 trial. Trial design: randomised complete block with four replications, four rows per plot, plots 8m long. Measurements: taken from 50 plants selected randomly from over 2000 plants.

Prior Applications and Sales Nil.

Description: Sueanne Langbein, Pacific Seeds Pty Ltd, Toowoomba, QLD.

Table 6 Avena varieties

	'Taipan'	'TAMO 397'	*'Barcoo'(*'Warrego'	'A.C. Assiniboia' (b syn Graza 68(1	*'Enterprise'(⁽⁾
FLAGLEAF WIDTH		10.7d	20 o.d	20.7cd	22.000	26.063
mean std deviation	24.08 ^b 2.74	19.7 ^d 1.88	20.06 ^d 1.63	20.76 ^d 2.25	22.08 ^c 1.60	26.06 ^a 1.78
FLAGLEAF LENGT mean	212.56 ^{bc}	201.98 ^{cd}	177.42 ^e	187.34 ^{de}	223.6 ^b	285.28 ^a
std deviation	34.36	26.27	23.80	29.57	32.83	46.36
PLANT HEIGHT (n	nm)					
mean	1284.6 ^a	1177.0 ^b	1095.3 ^{cd}	1314.2 ^a	1102.9 ^{cd}	1109.7 ^c
std deviation	58.26	46.86	60.22	57.74	66.29	70.05
GROWTH HABIT						
	semi-erect	semi-prostrate	semi-prostrate	semi-erect	intermediate	semi-erect
FREQUENCY OF P	I ANTS WITH	RECURVED FL	AG I FAVES (1	=absent or verv	low 3=low 5=1	medium, 7=high, 9=very high)
QCL. CT OF I	3	5	3	5	3	3
TIME OF PANICI F	EMERGENCE	(first snikelet vic	sible on 50% of	nanicles) (1=ve	rv early 3=early	7, 5=medium, 7=late, 9=very late)
TIME OF TAINICEE	5	3	3	5	7	7
STEM: HAIRINESS		(1=ahsent 0-n	resent)			
STEWL HAIRINESS	9	9 (1=aosent, 9=p.	9	1	9	1
STEM: INTENSITY		S OF TOP NOD	E (1-very week	2-week 5-m	adium 7-strong	0-very strong)
STEMI: INTENSITI	or naikines	3 OF TOP NOD 7	5	., 3=weak, 3=iii n/a	n/a	n/a
DANICI E. ODIENT	ATION OF DD A	NCHEC (1	-41 21			
PANICLE: ORIENT	3	2.	aterai, z=sub-ui	iiiaterai, 3=equi 3	3	3
DANIGLE ATTRICT		-				
PANICLE: ATTITUI	DE OF SPIKELI 2	2 2 2 1=erect, 2=	pendulous)	2	2	3
GLUME: GLAUCO	SITY (1=absent, 3	3=weak, 5=med	ium, 7=strong, 9	9=very strong) 5	3	3
GLUME: LENGTH	(3=short, 5=med	lium, 7=long) 7	5	5	5	3
		, 				3
PLANT: HEIGHT (s		(1=very short, 3		um, 7=strong, 9		-
	7	5	5	/	5	5
PRIMARY GRAIN:						estrong, 9=very strong)
	9	1	1	1	5	7
PRIMARY GRAIN:	LENGTH OF L	EMMA (1=very	short, 3=short,	5=medium, 7=lo	ong, 9=very long	g)
	5	7	5	5	7	5
PRIMARY GRAIN:	COLOUR OF L	EMMA (1=whit	e, 2=yellow, 3=	brown, 4=grey,	5=black)	
	2	2	1	2	2	2
PRIMARY GRAIN:	HAIRS ON BA	CK OF LEMMA	(1=absent, 9=p	resent)		
	1	9	1	1	1	1
PRIMARY GRAIN:	HAIRS ON TH	E BASE (1=abse	nt or very weak	, 3=weak, 5=me	edium, 7=strong	, 9=very strong)
	3	5	1	1	5	1
PRIMARY GRAIN:	LENGTH OF H	AIRS ON BASE	E (3=short, 5=m	edium, 7=long)		
>·	5	5	n/a	n/a	7	n/a
PRIMARY GRAIN:	WIDTH OF RA	CHILLA (3=nar	row, 5=medium	7=wide)		
	3	5	5	3	3	5
PRIMARY GRAIN:	LENGTH of rad	hilla (3=short 5	=medium 7-lor			
TRIVITATI ORAIN.	5	5 5	-medium, <i>7</i> -101	5	5	3

The mean values followed by the same letter are not significantly different at $(P \le 0.01)$ according to Duncan's Multiple Range Test.

'MA5107'

Application No: 2001/010 Accepted: 7 Feb 2001.

Applicant: Department of Agriculture for and on behalf of the State of New South Wales, Orange, NSW and Grains Research and Development Corporation, Barton, ACT.

Characteristics (Table 7, Figure 40) Plant: growth habit semi-prostrate winter type, early maturing, tall. Stem: hairiness absent. Leaf blade: hairiness weak to medium. Time of panicle emergence: early. Panicle: attitude of the branches semi-erect, attitude of the spikelets pendulous. Glume: glaucosity strong, length long. Primary grain: glaucosity of the lemma absent. Grain: husk present, colour dark brown.

Origin and Breeding Controlled pollination: parentage Qkr82-238/'Cooba'//'Yarran'///'Mortlock'. Original cross was made in 1986. Subsequent crosses were made with cultivars 'Yarran' and 'Mortlock' in an effort to improve grain quality. F₁ plants were harvested as a bulk and selections taken in the F₂, F₃ stage for maturity, height, straw strength and disease reaction. In the F₄ selections were screened for winter growth habit and those with winter habit were progressed. Preliminary yield and grain quality assessment was done in an unreplicated trial at Temora in 1991. In 1992, MA5107 was tested in replicated grazing and grain experiments. From 1993 to 2000, MA5107 was tested in NSW Agricultures' replicated S3 and S4 grazed and grain only experiments throughout NSW. Seed increase was conducted from 1996. Two hundred single head selections from pure breeder's seed increase were sown into individual 6-meter rows. Forty rows true to type were harvested as individual bulks. Each bulk was sown into an individual 4-row plot 12 meters long. All plots true to type were harvested into a bulk line of pure breeder's seed. This line has been increased in 2000. Selection criteria: disease resistance, plant type, straw strength and grain quality. Propagation: by seed. Breeder: Glenn Roberts, NSW Agriculture.

Choice of Comparators 'Cooba' was selected as a comparator because it is a part of the original cross. 'Yarran' was used as it was crossed to the original F₁ to improve grain quality. Subsequently 'Mortlock' was used as the pollen parent for the final cross. 'Echidna', 'Quoll', 'Hotham' (b), 'Euro' and 'Carrolup' (b) were discarded as comparators as they all have spring habit and considerably shorter in plant height. Common winter habit varieties 'Blackbutt', 'Bimbil', 'Carbeen' and 'Coolabah' were not considered, as they are significantly later in maturity and weaker in straw strength.

Comparative Trial Location: sown on Temora Agricultural Research and Advisory Station, Barmedman Rd, Temora NSW. Conditions: sown into red clay soils on good moisture at 60kg/ha seeding rate with 100kg/ha of MAP. Trial design: randomised plots 6m x 1.42m in 2 replicates. Measurements: 10 specimens per replicate randomly selected from 1,750 plants per plot.

Prior Applications and Sale Nil.

Description: Paul Breust, NSW Agriculture, Temora, NSW.

Table 7 Avena varieties

	'MA5107'	*'Cooba'	*'Yarran'	*'Mortlock'
PLANT HEIC	GHT (cm)			
mean	122.4	126.4	103.4	98.7
std deviation	7.64	3.50	4.41	5.89
LSD/sig	17.58	ns	P≤0.01	P≤0.01
PANICLE LE	NGTH (mm)		
mean	239.6	246.1	195.9	195.0
std deviation	21.69	32.72	25.96	16.0
LSD/sig	21.39	ns	P≤0.01	P≤0.01
GROWTH H	ABIT			
	semi	prostrate	interm-	semi erect
	prostrate		ediate	
LEAF HAIRI	NESS OF M	ARGINS		
	weak-	absent	medium -	absent -
	medium		weak	very weak
CURVATURE	OF FLAG	LEAF		
	absent –	absent-	medium	absent -
	very low	very low		very low
EAR EMERO	SENCE FIRS	ST SPIKLE	T VISIBLE	ON 50% OF
	early	medium	early	early
GLUME LEN	IGTH			
	long	medium-	long	medium -
	2	long	2	long
PRIMARY G	RAIN GLAU	JCOSITY (OF THE LE	MMA
	absent	absent	medium	absent
GRAIN COL	OUR			
	dark	brown	dark	yellow-
		0101111	auri	j cho w

Brassica napus var oleifera Canola

'44C71'

Application No: 2000/091 Accepted: 8 Mar 2000.

Applicant: **Pioneer Hi-Bred International, Inc.** Des Moines, Iowa, USA.

Agent: **Pioneer Hi-Bred Australia Pty Ltd,** Toowoomba, QLD.

Characteristics (Table 8, Figure 29) Plant: height tall (133.0cm), maturity mid. Seedlings: variable for hairs on the first true leaf, Leaf: length long (18.73cm), width wide (9.25cm), dentation of margin medium with many lobes. Flowers: petals length/width ratio of 1.58. Pods: medium (49.3mm). Peduncle medium (19.15mm). Beak medium (11.07mm). Disease resistance: moderately resistant to blackleg (*Leptosphaeria maculans*).

Origin and Breeding Controlled pollination: seed parent ('Barossa' x 'Bullet') x pollen parent '46A72', followed by a modified pedigree breeding method. The female parent is susceptible to blackleg while the male parent is a Canadian IMI resistant line that contributed the genes responsible for

the imidazolinone resistance. Selection criteria: yield, canola quality oil and protein and blackleg resistance. Propagation: seed. Breeder: Dr Jay Patel, Pioneer Hi-Bred International, Inc. Georgetown, Ontario Canada.

Choice of Comparators 'Karoo' (b) and 'Monty' (b) were considered for the comparative trial as these are similar varieties of common knowledge. 'Karoo' (b) is a widely available variety with similar maturity. 'Monty' (b), was chosen because of its similarity in maturity and height. The female parents were not considered for the trial as they have very minimal resistance to blackleg.

Comparative Trial Location: Wagga Wagga, NSW, Jun 2000 to Dec 2000. Conditions: field trial conducted on heavy grey cracking clay soil supplemented with nitrogen and phosphorus fertilisers. Trial design: 1m wide x 3m long field plots, 3 replicates of each variety arranged in a randomised block design. Measurements: twenty samples selected at random for each replicate of each variety.

Prior Applications and Sales

No prior applications. First sold in Australia in Dec 1999.

Description: **Milton Jaeger**, Pioneer Hi-Bred International, Inc., Wagga Wagga, NSW.

Table 8 Brassica varieties

	'44C71'	*'Monty'	*'Karoo'				
LEAF: COLOU	JR (Light, Med	ium, Dark; Sha	ndes of Green)				
	dark	medium	light				
LEAF: LOBE NUMBER (Few, Medium, Many)							
	many	few	many				
LEAF: DENTA	LEAF: DENTATION OF MARGIN (1=Small 9=Large)						
	5	6	5				
LEAF LENGT	H (cm)						
mean	18.73	14.83	15.58				
std deviation	2.79	2.59	3.72				
LSD/sig	1.48	P≤0.01	P≤0.01				
TIME OF FLO	WERING (Day	s after sowing:	1-6-99)				
days	103	100	104				
PETAL WIDTI	H (mm)						
mean	6.09	5.94	5.55				
std deviation	0.81	0.71	0.63				
LSD/sig	0.35	ns	P≤0.01				
PLANT HEIGH	HT (cm)						
mean	133	120	130				
std deviation	10.41	7.64	5.00				
LSD/sig	9.44	P≤0.01	ns				
SILIQUA LEN	GTH (mm)						
mean	49.30	57.11	59.28				
std deviation	4.95	4.63	10.27				
LSD/sig	3.42	P≤0.01	P≤0.01				

SILIQUA: LEN	NGTH OF P	EDUNCLE (mm	1)
mean	19.15	24.05	19.65
std deviation	2.08	3.53	2.38
LSD/sig	1.32	P≤0.01	ns

HERBICIDE RESISTANCE (Active Constituents Imazapic & Imazapyr)

yes

no

no

'46C03'

Application No: 2000/199 Accepted: 17 Jul 2000.

Applicant: **Pioneer Hi-Bred International, Inc.** Des Moines, Iowa, USA.

Agent: Pioneer Hi-Bred Australia Pty Ltd, Toowoomba, QLD.

Characteristics (Table 9, Figure 30) Plant: height tall (133.0cm), maturity mid. Seedlings: variable for hairs on the first true leaf, Leaf: length long (17.13cm), width broad (9.05cm), dentation of margin medium with many lobes. Flowers: petals length/width ratio of 1.68. Pods: medium (55.92mm). Peduncle medium (19.10mm). Beak medium (10.78mm). Disease resistance: moderately resistant to blackleg (*Leptosphaeria maculans*).

Origin and Breeding Controlled pollination: seed parent ('Barossa' x 'Bullet') x pollen parent 'Oscar' (b), followed by a modified pedigree breeding method. The female parent is susceptible to blackleg. Selection criteria: yield canola quality oil and protein and blackleg resistance. Propagation: seed. Breeder: Dr Jay Patel, Pioneer Hi-Bred International, Inc. Georgetown, Ontario Canada.

Choice of Comparators 'Oscar', '46C01', 'Rainbow', 'Ripper', and 'AG Emblem' were considered for the comparative trial as these are similar varieties of common knowledge. 'Oscar', is a widely available variety and one of the parents. '46C01', was chosen because it is a similar variety from the same breeding program. 'Rainbow', 'Ripper', and 'AG Emblem' were chosen for their similarities in height and maturity. The female parents were not considered for the trial as they have very minimal resistance to blackleg.

Comparative Trial Location: Wagga Wagga, NSW, Jun 2000 to Dec 2000. Conditions: field trial conducted on heavy grey cracking clay soil supplemented with nitrogen and phosphorus fertilisers. Trial design: 1m wide x 3m long field plots, 3 replicates of each variety arranged in a randomised block design. Measurements: twenty samples selected at random for each replicate of each variety.

Prior Applications and Sales

No prior applications. First sold in Australia in Dec 1999.

Description: **Milton Jaeger**, Pioneer Hi-Bred International, Inc., Wagga Wagga, NSW.

Table 9 Brassica varieties

	'46C03'	*'Oscar'()	*'46C01' ⁽⁾	*'Rainbow'	*'Ripper'	*'AG Emblem
LEAF: COLOUR	Light, Medium, D	Oark; Shades of Green)				
	medium	medium	medium	medium	light	medium
LEAF: LOBE NU	MBER (Few, Med	ium, Many)				
	many	few	medium	many	few	medium
LEAF: DENTATION	ON OF MARGIN	(1=Small 9=Large)				
	5	6	3	6	7	6
LEAF LENGTH (cm)					
mean	17.13	18.85	17.18	17.68	15.53	15.26
std deviation	2.52	2.99	3.93	4.43	2.11	3.14
LSD/sig	1.58	P≤0.01	ns	ns	P≤0.01	P≤0.01
LEAF WIDTH (cr	n)					
mean	9.05	8.32	8.58	9.67	10.10	9.17
std deviation	1.40	1.49	1.48	1.76	1.60	1.47
LSD/sig	0.74	ns	ns	ns	P≤0.01	ns
TIME OF FLOWE	ERING (Days after	sowing: 1-6-99)				
days	108	110	108	106	108	105
PETAL WIDTH (r	nm)					
mean	6.17	6.06	6.85	5.99	6.29	6.76
std deviation	0.78	0.85	1.01	0.77	0.76	0.84
LSD/sig	0.40	ns	P≤0.01	ns	ns	P≤0.01
PETAL: LENGTH	WIDTH RATIO					
mean	1.68	1.66	1.40	1.66	1.55	1.58
std deviation	0.32	0.36	0.30	0.32	0.28	0.29
LSD/sig	0.15	ns	P≤0.01	ns	ns	ns
PLANT HEIGHT	(cm)					
mean	133	132	138	132	145	147
std deviation	5.77	2.89	2.89	2.89	8.66	2.89
LSD/sig	5.74	ns	ns	ns	P≤0.01	P≤0.01
SILIQUA LENGT	H (mm)					
mean	55.92	53.65	50.67	55.16	63.78	56.08
std deviation	10.44	9.41	3.53	5.64	8.35	5.22
LSD/sig	3.62	ns	P≤0.01	ns	P≤0.01	ns
SILIQUA: LENGT	TH OF BEAK (mn					
mean	10.78	9.19	8.39	10.45	16.53	11.00
std deviation	1.39	1.19	1.24	2.10	1.94	1.76
LSD/sig	0.79	P≤0.01	P≤0.01	ns	P≤0.01	ns
SILIQUA: LENGT	TH OF PEDUNCL					
mean	19.10	17.96	19.07	17.43	22.75	18.45
std deviation	3.33	2.00	3.15	2.10	3.07	2.00
LSD/sig	1.29	ns	ns	P≤0.01	P≤0.01	ns

'AG Outback'

Application No: 2000/266 Accepted: 29 Aug 2000. Applicant: **Ag-Seed Research Pty Ltd**, Horsham, VIC.

Characteristics (Table 10, Figure 31) Plant: habit erect, height medium (120.1cm), early maturing. Seedling: cotyledon narrow (width/length ratio 1.61), first true leaf few to numerous hairs, 5th leaf lobbing mostly absent (5% lobes), colour green (RHS 137C-D, 1986). Flower: narrow petals (length/width ratio 2.3), anther dotting present. Pods: short (43.4mm), pedicel short (19.7mm), beak short (10.9mm). Seed: black, canola quality. Disease Resistance: high blackleg resistance.

Origin and Breeding Controlled pollination: 'AG Outback' was developed using a modified pedigree breeding method in 1997 from a cross, made in 1996, between seed parent, AGA95-1 and pollen parent 'Monty' (b). The seed parent is a breeding line, which is characterised by early to very early maturity, lower oil content, poor blackleg resistance and the pollen parent is characterised by early maturity, better oil content and better blackleg resistance. Between 1997 and 1998 the cross was evaluated for yield, blackleg resistance, oil and protein content and canola quality in nurseries at Mininera and Horsham. In 1999 the variety was entered into the Interstate Stage 2 canola trials and then to Stage 4 trials in 2000, as AGA99-4, and was trialled in a range of locations covering

relevant canola growing regions of Australia for two years. Certified seed production occurred in 2000 and the variety will be commercialised in 2001. Propagation: open pollinated seed. Breeder: Ag-Seed Research Pty Ltd under a team headed by Dr. Gururaj Kadkol.

Choice of Comparators 'AG Emblem', 'Georgie', 'Mystic' (b) and 'Monty' (b) were used as comparators. 'AG Emblem' and 'Georgie' are recently released medium early maturing canola varieties. 'Mystic' (b) and 'Monty' (b) are established early maturity varieties in Australia. The seed parent was not included because it is breeding line within the breeding program.

Comparative Trial Location: Comparative trials were conducted at Ag-Seed Research trial site at Horsham, VIC. Conditions: Field trials were conducted during 2000 season. Glasshouse trials were carried out in 2000 and 2001. Trial Design: data on mature plant characters were collected in replicated field trials consisting of six row, 5m plots laid out as randomised blocks. Seedling character data were collected in glasshouse trials designed as completely randomised trials. Measurement: data were recorded on 20 random plants from each of the three replicates giving a total of 60 observations per variety.

Prior Applications and Sales Nil.

Description: Paul Rudolph, Ag-Seed Research Pty Ltd, Horsham, VIC.

Table 10 Brassica varieties

	'AG Outback'	*'AG Emblem'	*'Georgie'	*'Mystic'	'Monty'
COTYLEDON W	IDTH/LENGTH				
mean	1.610	1.980	1.931	1.965	1.838
std deviation	0.128	0.134	0.134	0.231	0.154
LSD/sig	0.069	P≤0.01	P≤0.01	P≤0.01	P≤0.01
EXTENT OF HAI	IRS ON FIRST TRUE L	EAF			
absent	7	3	5	39	26
few	27	28	29	21	31
numerous	26	29	26	0	3
PERCENTAGE O	F LEAF LOBING				
present	5.0	83.3	43.3	60.0	10.0
LOBE NUMBER	PER LEAF WITH LOB	ES			
mean	3.0	2.8	2.7	3.0	2.8
DAYS TO 50% FI	LOWERING				
	105	106	108	105	105
PETAL LENGTH	/WIDTH				
mean	2.29	1.65	2.17	1.64	1.65
std deviation	0.17	0.07	0.22	0.12	0.10
LSD/sig	0.08	P≤0.01	P≤0.01	P≤0.01	P≤0.01
PERCENTAGE O	F ANTHER DOTTING				
present	98.3	6.6	56.6	100	100
PLANT HEIGHT	(cm)				
mean	120.1	120.2	126.8	120.4	117.9
std deviation	6.58	7.71	8.51	9.02	8.15
LSD/sig	3.8	ns	P≤0.01	ns	ns

SILIQUA LENGTI	H (mm)				
mean	43.4	53.3	49.7	54.1	53.7
std deviation	3.38	5.43	5.39	5.74	5.21
LSD/sig	2.4	P≤0.01	P≤0.01	P≤0.01	P≤0.01
PEDICEL LENGT	H (mm)				
mean	19.7	23.1	23.6	23.8	23.2
std deviation	3.04	3.43	4.75	3.85	4.32
LSD/sig	1.9	P≤0.01	P≤0.01	P≤0.01	P≤0.01
BEAK LENGTH (mm)				
mean	10.9	11.0	11.6	12.6	10.6
std deviation	1.30	1.64	1.97	2.41	1.70
LSD/sig	0.9	ns	ns	P≤0.01	ns

'ATR Grace'

Application No: 1999/344 Accepted: 20 Jun 2000.

Applicant: Agriculture Victoria Services Pty Ltd, Attwood, VIC and Grains Research and Development Corporation, Barton, ACT.

Agent: Ag-Seed Research Pty Ltd, Horsham, VIC.

Characteristics (Table 11, Figure 32) Plant: habit erect, height medium short (108.0cm), medium late maturing. Seedling: cotyledon medium (width/length ratio 1.8), first true leaf few to numerous hairs, 5th leaf mostly lobed (88% lobed), colour green (RHS 137C-D, 1986). Flower: medium petals (length/width ratio 1.8), anther dotting present. Pods: medium (48mm), pedicel medium to short (20.3mm), beak medium to short (9.4mm). Seed: black, canola quality. Herbicide resistance: tolerant to triazine herbicides.

Origin and Breeding Controlled pollination: 'ATR Grace' was developed using a modified breeding method in 1996 from a cross, made in 1994, between seed parent 'TI1 Pinnacle' and pollen parent 'Grouse'. The seed parent is characterised by triazine tolerance, medium late maturity, shorter plant height. The pollen parent is characterised by medium early maturity, medium plant height and higher blackleg resistance. During 1995 and 1996 the segregating material was selected for blackleg resistance and oil and protein content in nurseries at Lake Bolac and Horsham. In 1997 the variety was evaluated for yield and canola quality in a preliminary yield trial at Horsham. In 1998 the variety was entered into the Interstate Stage 2 canola trials and then to Stage 4 trials in 1999, as TM4, and was trialled in a range of locations covering relevant canola growing regions of Australia for two years. Seed production occurred in 2000. Propagation: open pollinated seed. Breeder: Oilseeds team at Victorian Institute for Dryland Agriculture, Horsham, led by Mr Wayne Burton.

Choice of Comparators 'TI1 Pinnacle' and 'Surpass 600TT' were used as comparators. 'TI1 Pinnacle' has been a leading medium maturing triazine tolerant canola variety in Australia since 1997 and is also the seed parent for 'ATR Grace'. 'Surpass 600TT' is included as a recently released medium maturity variety. The pollen parent was not considered for reasons mentioned above.

Comparative Trial Location: Comparative trials were conducted at Ag-Seed Research trial site at Horsham, VIC. Conditions: Field trials were conducted during 2000 season.

Glasshouse trials were carried out in 2000 and 2001. Trial Design: data on mature plant characters were collected in replicated field trials consisting of six row, 5m plots laid out as randomised blocks. Seedling character data were collected in glasshouse trials designed as completely randomised trials. Measurement: data were recorded on 20 random plants from each of the three replicates giving a total of 60 observations per variety.

Prior Applications and Sales Nil.

Description: Paul Rudolph, Ag-Seed Research Pty Ltd, Horsham, VIC.

Table 11 Brassica varieties

	'ATR Grace'	*'TI1 Pinnacle'	*'Surpass 600TT'
COTYLEDON	WIDTH/LENG	TH	
mean	1.826	1.868	1.715
std deviation	0.090	0.122	0.138
LSD/sig	0.057	ns	P≤0.01
EXTENT OF I	HAIRS ON FIRS	T TRUE LEA	F
absent	3	28	0
few	41	32	0
numerous	16	0	60
PERCENTAG	E OF LEAF LOI	BING	
present	88.3	96.6	73.3
LOBE NUMB	ER PER LEAF V	WITH LOBES	
mean	3.8	3.5	2.8
DAYS TO 50%	6 FLOWERING		
	116	114	114
PETAL LENG	TH/WIDTH		
mean	1.834	1.835	2.006
std deviation	0.133	0.015	0.124
LSD/sig	0.06	ns	P≤0.01
PERCENTAG	E OF ANTHER	DOTTING	
present	98.3	90.0	93.3
SILIQUA LEN	NGTH (mm)		
mean	48.0	49.3	50.6
	4.41	4.38	4.66
std deviation	4.41	T.50	7.00

Table 11 continued

BEAK LENGTH (mm)					
mean	9.44	8.09	10.09		
std deviation	1.53	1.79	1.65		
LSD/sig	0.82	P≤0.01	ns		

'ATR Hyden'

Application No: 1999/349 Accepted: 29 Mar 2000. Applicant: **Ag-Seed Research Pty Ltd**, Horsham, VIC.

Characteristics (Table 12, Figure 33) Plant: habit erect, height medium tall (117cm), medium to early maturing. Seedling: cotyledon relatively wide (width/length ratio 1.9), first true leaf few hairs, 5th leaf mostly lobed (71.6% lobed), colour green (RHS 137B-C, 1986). Flower: wide petals (length/width ratio 1.6), anther dotting present. Pods: medium length (47.5mm), pedicel medium (21.2mm), beak medium (10.6mm). Seed: black, canola quality. Disease Resistance: good blackleg resistance. Herbicide resistance: tolerant to triazine herbicides.

Origin and Breeding Controlled pollination: 'ATR Hyden' was developed using a modified breeding method in 1998 from a backcross (BC₁F₁), made in 1994, between seed parent 'Siren' and pollen parent 'Dunkeld'. The seed parent was characterised by triazine tolerance, lower seedling vigour, poor blackleg resistance, late maturity and lower oil content. The pollen parent was characterised by good seedling vigour, medium maturity, good blackleg resistance and high oil content. Between 1995 and 1997 the segregating material was selected for oil and protein content, canola quality, yield potential, and disease resistance in nurseries at Lake Bolac and Horsham. In 1999 the variety was entered into the Interstate Stage 2 Canola Trials and then to Stage 4 in 2000, as AGA99-27, and was trialled in a range of locations covering relevant canola growing regions of Australia for two years. Propagation: open pollinated seed. Breeder: Ag-Seed Research Pty Ltd under a team headed by Dr. Gururaj Kadkol.

Choice of Comparators 'Bugle', 'Karoo' and 'TI1 Pinnacle' were used as comparators. 'Karoo' has been the leading early maturing triazine tolerant canola variety in Australia since 1997. 'TI1 Pinnacle' has been a major medium maturing triazine tolerant canola variety in Australia since 1997. 'Bugle' is included as a recently released medium to early maturity triazine tolerant canola variety. The parents were not included for reasons stated above.

Comparative Trial Location: Comparative trials were conducted at Ag-Seed Research trial site at Horsham, VIC. Conditions: Field trials were conducted during 2000 season. Glasshouse trials were carried out in 2000 and 2001. Trial Design: data on mature plant characters were collected in replicated field trials consisting of six row, 5m plots laid out as randomised blocks. Seedling character data were collected in glasshouse trials designed as completely randomised trials. Measurement: data were recorded on 20 random plants from each of the three replicates giving a total of 60 observations per variety.

Prior Applications and Sales

No prior applications. First sold in Australia in Mar 2001.

Description: Paul Rudolph, Ag-Seed Research Pty Ltd. Horsham, VIC.

Table 12 Brassica varieties

12 41 7 E OF LEA 71.6	LENGTH 1.835 0.106 P≤0.01 N FIRST TR 0 48 12 F LOBING 86.6 EAF WITH	20 26 4 65.0	1.868 0.122 ns 28 32 0
1.902 0.121 0.057 HAIRS ON 12 41 7 E OF LEA 71.6	1.835 0.106 P≤0.01 V FIRST TR 0 48 12 F LOBING 86.6	0.136 P≤0.01 UE LEAF 20 26 4	0.122 ns 28 32 0
0.121 0.057 HAIRS ON 12 41 7 E OF LEA 71.6	0.106 P≤0.01 V FIRST TR 0 48 12 F LOBING 86.6	0.136 P≤0.01 UE LEAF 20 26 4	0.122 ns 28 32 0
0.057 HAIRS ON 12 41 7 E OF LEA 71.6 ER PER L	P≤0.01 V FIRST TR 0 48 12 F LOBING 86.6	P≤0.01 UE LEAF 20 26 4 65.0	ns 28 32 0
HAIRS ON 12 41 7 E OF LEA 71.6 ER PER L	F LOBING 86.6	UE LEAF 20 26 4	28 32 0
12 41 7 E OF LEA 71.6 ER PER L	0 48 12 F LOBING 86.6	20 26 4 65.0	32
41 7 E OF LEA 71.6 ER PER L	48 12 F LOBING 86.6	26 4 65.0	32
7 E OF LEA 71.6 ER PER L	12 F LOBING 86.6	65.0	0
E OF LEA 71.6 ER PER L	F LOBING 86.6	65.0	
71.6 ER PER L	86.6		96.6
ER PER L			96.6
	EAF WITH		
2.88		LOBES	
	3.07	2.71	3.45
6 FLOWE	RING		
111	111	108	114
TH/WIDT	H		
1.66	2.13	1.66	1.83
0.09	0.19	0.11	0.15
0.06	P≤0.01	ns	P≤0.01
E OF ANT	HER DOTT	ING	
100	96.6	100	90.0
HT (cm)			
117.0	103.3	108.6	110.3
6.94	6.78	6.46	7.12
3.5	P≤0.01	P≤0.01	P≤0.01
IGTH (mm	1)		
47.5	46.9	46.4	49.3
			4.38
2.3	ns	ns	ns
NGTH (mn	n)		
		18.5	17.5
			3.79
1.88	ns	P≤0.01	P≤0.01
 ΓH (mm)			
	11.43	10.22	8.09
			1.79
0.82	P≤0.01	ns	P≤0.01
(mm)			
` /	4 41	4 72	4.35
			0.36
			0.30 P≤0.01
	TH/WIDT 1.66 0.09 0.06 E OF ANT 100 HT (cm) 117.0 6.94 3.5 GTH (mm 47.5 4.98 2.3 NGTH (mm 21.2 3.76 1.88 TH (mm) 10.55 1.72	TH/WIDTH 1.66	TH/WIDTH 1.66

'Insignia'

Application No: 1999/169 Accepted: 12 Jul 1999. Applicant: **Ag-Seed Research Pty Ltd,** Horsham, VIC.

Characteristics (Table 13, Figure 34) Plant: habit erect, height tall (127.6cm), medium to late maturing. Seedling: cotyledon wide (width/length ratio 2.01), first true leaf few hairs, 5th leaf mostly lobed (83.3% lobed), colour green (RHS 137C-D, 1986). Flower: medium width petals (length/width ratio 2.07), anther dotting present. Pods: long (55.1mm), pedicel long (25.7mm), beak medium long (12.6mm). Seed: black, canola quality. Disease Resistance: good blackleg resistance.

Origin and Breeding Controlled pollination: 'Insignia' was developed using a modified pedigree breeding method in 1995 from a cross, made in 1988, between seed parent 'Drakkar' and pollen parent 'Eureka'. The seed parent is characterised by strong leaf indentation and pollen parent is characterised by short plant height. Between 1989 and 1994 the segregating material was selected for yield, blackleg resistance, oil and protein content and canola quality in nurseries at Lake Bolac and Horsham. In 1997, the variety was entered into the Interstate Stage 2 canola trials and then to Stage 4 trials in 1998, as AGA97-6, and was trialled in a range of locations covering relevant canola growing regions of Australia for two years. Certified seed production occurred in 1999 and the variety was commercialised in 2000. Propagation: open pollinated seed. Breeder: Ag-Seed Research Pty Ltd under a team headed by Dr. Gururaj Kadkol.

Choice of Comparators 'Charlton', 'Ripper', and 'Oscar', were used as comparators. 'Oscar', and 'Charlton', have been major medium maturing canola varieties in Australia since 1994 and 1998 respectively. 'Ripper', was included as a recently released medium maturity variety. The parents were not considered for reasons mentioned above.

Comparative Trial Location: Comparative trials were conducted at Ag-Seed Research trial site at Horsham, VIC. Conditions: Field trials were conducted during 2000 season. Glasshouse trials were carried out in 2000 and 2001. Trial Design: data on mature plant characters were collected in replicated field trials consisting of six row, 5m plots laid out as randomised blocks. Seedling character data were collected in glasshouse trials designed as completely randomised trials. Measurement: data were recorded on 20 random plants from each of the three replicates giving a total of 60 observations per variety.

Prior Applications and Sales

No prior applications. First sold in Australia in Apr 2000.

Description: Paul Rudolph, Ag-Seed Research Pty Ltd, Horsham, VIC.

Table 13 Brassica varieties

few 37 37 31 40 numerous 15 15 20 16 PERCENTAGE OF LEAF LOBING present 83.3 66.6 81.6 6.6 DAYS TO 50% FLOWERING 114 113 114 113 PERCENTAGE OF ANTHER DOTTING present 86.6 60.0 100 51.6 PLANT HEIGHT (cm) mean 127.6 125.1 130.4 119.2 std deviation 8.97 7.63 9.15 8.06 LSD/sig 3.8 ns ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 SILIQUA LENGTH (mm) mean 25.8 23.0 25.9 18.2 SILIQUA LENGTH (mm) mean 25.8 23.0 25.9 18.2 SILIQUA LENGTH (mm) mean 25.8 23.0 25.9 18.2 SILIQUA LENGTH (mm) mean 25.8 23.0 25.9 18.2 SILIQUA LENGTH (mm) 15.1 9.3 SILIQUA LENG		'Insignia'	*'Charlton	ı' [⊕] *'Ripper' [⊕]	*'Oscar'
few 37 37 31 40 numerous 15 15 20 16 PERCENTAGE OF LEAF LOBING present 83.3 66.6 81.6 6.6 DAYS TO 50% FLOWERING 114 113 114 113 PERCENTAGE OF ANTHER DOTTING present 86.6 60.0 100 51.6 PLANT HEIGHT (cm) mean 127.6 125.1 130.4 119.2 std deviation 8.97 7.63 9.15 8.06 LSD/sig 3.8 ns ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	EXTENT OF	HAIRS ON	FIRST TF	RUE LEAF	
numerous 15 15 20 16 PERCENTAGE OF LEAF LOBING present 83.3 66.6 81.6 6.6 DAYS TO 50% FLOWERING 114 113 114 113 114 113 114 113 114 113 114 113 114 113 114 113 114 113 114 113 114 113 114 113 114 113 114 113 114 113 114 113 115 113 143 149 43 143 143 43 43 43 43 43 43 43 43 43 43	absent	8	8	9	4
PERCENTAGE OF LEAF LOBING present 83.3 66.6 81.6 6.6 DAYS TO 50% FLOWERING	few	37	37	31	40
present 83.3 66.6 81.6 6.6 DAYS TO 50% FLOWERING 114 113 114 113 PERCENTAGE OF ANTHER DOTTING present 86.6 60.0 100 51.6 PLANT HEIGHT (cm) mean 127.6 125.1 130.4 119.2 std deviation 8.97 7.63 9.15 8.06 LSD/sig 3.8 ns ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01	numerous	15	15	20	16
DAYS TO 50% FLOWERING 114 113 114 113 PERCENTAGE OF ANTHER DOTTING present 86.6 60.0 100 51.6 PLANT HEIGHT (cm) mean 127.6 125.1 130.4 119.2 std deviation 8.97 7.63 9.15 8.06 LSD/sig 3.8 ns ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	PERCENTAG	E OF LEA	F LOBING	·	
PERCENTAGE OF ANTHER DOTTING present 86.6 60.0 100 51.6 PLANT HEIGHT (cm) mean 127.6 125.1 130.4 119.2 std deviation 8.97 7.63 9.15 8.06 LSD/sig 3.8 ns ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	present	83.3	66.6	81.6	6.6
PERCENTAGE OF ANTHER DOTTING present 86.6 60.0 100 51.6 PLANT HEIGHT (cm) mean 127.6 125.1 130.4 119.2 std deviation 8.97 7.63 9.15 8.06 LSD/sig 3.8 ns ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	DAYS TO 50°	% FLOWE	RING		
PLANT HEIGHT (cm) mean 127.6 125.1 130.4 119.2 std deviation 8.97 7.63 9.15 8.06 LSD/sig 3.8 ns ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 <td< td=""><td></td><td>114</td><td>113</td><td>114</td><td>113</td></td<>		114	113	114	113
PLANT HEIGHT (cm) mean 127.6 125.1 130.4 119.2 std deviation 8.97 7.63 9.15 8.06 LSD/sig 3.8 ns ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	PERCENTAG	E OF ANT	HER DOT	ΓING	
mean 127.6 125.1 130.4 119.2 std deviation 8.97 7.63 9.15 8.06 LSD/sig 3.8 ns ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 Std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 Std deviation 0.31 0.34 0.29 0.33	present	86.6	60.0	100	51.6
std deviation 8.97 7.63 9.15 8.06 LSD/sig 3.8 ns ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	PLANT HEIC	GHT (cm)			
LSD/sig 3.8 ns P≤0.01 SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	mean	127.6	125.1	130.4	119.2
SILIQUA LENGTH (mm) mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	std deviation	8.97	7.63	9.15	8.06
mean 55.1 51.1 49.3 43.8 std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	LSD/sig	3.8	ns	ns	P≤0.01
std deviation 4.77 6.73 4.98 3.93 LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	SILIQUA LEI	NGTH (mm	ı)		
LSD/sig 2.3 P≤0.01 P≤0.01 P≤0.01 PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	mean	55.1	51.1	49.3	43.8
PEDICEL LENGTH (mm) mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	std deviation	4.77	6.73	4.98	3.93
mean 25.8 23.0 25.9 18.2 std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	LSD/sig	2.3	P≤0.01	P≤0.01	P≤0.01
std deviation 5.38 3.66 5.86 2.99 LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	PEDICEL LE	NGTH (mn	n)		
LSD/sig 2.09 P≤0.01 ns P≤0.01 BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	mean			25.9	18.2
BEAK LENGTH (mm) mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	std deviation	5.38	3.66	5.86	2.99
mean 12.6 13.1 15.1 9.3 std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	LSD/sig	2.09	P≤0.01	ns	P≤0.01
std deviation 1.99 2.02 1.78 1.32 LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	BEAK LENG	TH (mm)			
LSD/sig 0.8 ns P≤0.01 P≤0.01 POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	mean	12.6	13.1	15.1	9.3
POD WIDTH (mm) mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	std deviation	1.99	2.02	1.78	1.32
mean 4.91 4.76 4.61 4.61 std deviation 0.31 0.34 0.29 0.33	LSD/sig	0.8	ns	P≤0.01	P≤0.01
std deviation 0.31 0.34 0.29 0.33	POD WIDTH	(mm)			
	mean	4.91	4.76	4.61	4.61
	std deviation	0.31	0.34	0.29	0.33
	LSD/sig	0.14	P≤0.01	P≤0.01	P≤0.01

'Trooper'

Application No: 1999/170 Accepted: 25 Jun 1999. Applicant: **Ag-Seed Research Pty Ltd**, Horsham, Vic

Characteristics (Table 14, Figure 35) Plant: habit erect, height tall (129.2cm), medium to late maturing. Seedling: cotyledon wide (width/length ratio 2.0), first true leaf numerous hairs, 5th leaf lobed (3.0 lobes), colour green (RHS 137C-D, 1986). Flower: medium width petals(length/width ratio 2.02), anther dotting present. Pods: short (45.3mm), pedicel medium short (21.7mm), beak short (9.0mm). Seed: black, canola quality.

Origin and Breeding Controlled pollination: 'Trooper' was developed using double haploid transformation in 1993 from a cross, made in 1992, between two breeding lines, Oscar*1-1 and Westar*22. The seed parent is characterised by lower oil content, medium maturity and good blackleg resistance. The pollen parent is characterised by higher oil content, later maturity and poor blackleg resistance. Between 1993 and 1996 the variety was evaluated for yield, blackleg resistance, oil and protein content and canola

quality in nurseries at Lake Bolac and Horsham. In 1997 the variety was entered into the Interstate Stage 2 canola trials and then to Stage 4 trials in 1998, as AGA97-14, and was trialled in a range of locations covering relevant canola growing regions of Australia for two years. Certified seed production occurred in 1999 and the variety was commercialised in 2000. Propagation: open pollinated seed. Breeder: Ag-Seed Research Pty Ltd under a team headed by Dr. Gururaj Kadkol.

Choice of Comparators 'Charlton', 'Ripper', and 'Oscar', were used as comparators. 'Oscar', and 'Charlton', have been a leading medium maturing canola varieties in Australia since 1994 and 1998 respectively. 'Ripper', was included as a recently released medium maturity variety. The pollen parent was not considered because it is an experimental inbred line within the breeding program.

Comparative Trial Location: Comparative trials were conducted at Ag-Seed Research trial site at Horsham, VIC. Conditions: Field trials were conducted during 2000 season. Glasshouse trials were carried out in 2000 and 2001. Trial Design: data on mature plant characters were collected in replicated field trials consisting of six row, 5m plots laid out as randomised blocks. Seedling character data were collected in glasshouse trials designed as completely randomised trials. Measurement: data were recorded on 20 random plants from each of the three replicates giving a total of 60 observations per variety.

Prior Applications and Sales

No prior applications. First sold in Australia in Apr 2000.

Description: Paul Rudolph, Ag-Seed Research Pty Ltd, Horsham, VIC.

Table 14 Brassica varieties

	'Trooper'	*'Charlton'	[⊕] *'Ripper' ^{(⊕}	*'Oscar'				
COTYLEDON	WIDTH/L	ENGTH						
mean	2.003	1.886	1.921	1.835				
std deviation	0.110	0.150	0.164	0.176				
LSD/Sig	0.076	P≤0.01	P≤0.01	P≤0.01				
EXTENT OF HAIRS ON FIRST TRUE LEAF								
absent	1	8	9	4				
few	18	37	31	40				
numerous	41	15	20	16				
PERCENTAG	E OF LEAF	LOBING						
present	75.0	66.6	81.6	6.6				
LOBE NUMB	ER PER PL	ANT WITH	I LOBED L	EAVES				
mean	2.96	2.95	3.37	2.75				
DAYS TO 50%	6 FLOWER	ING						
	113	113	114	113				
PETAL LENGTH/WIDTH								
mean	2.02	1.80	1.80	2.19				
std deviation	0.14	0.14	0.11	0.17				
LSD/sig	0.06	P≤0.01	P≤0.01	P≤0.01				
PERCENTAG	E OF ANTH	HER DOTTI	NG					
present	48.3	60.0	100	51.6				

PLANT HEIC	HT (cm)			
mean	129.2	125.1	130.4	119.2
std deviation	8.67	7.63	9.15	8.06
LSD/sig	3.8	P≤0.01	ns	P≤0.01
SILIQUA LEI	NGTH (mm)		
mean	45.3	51.1	49.3	43.8
std deviation	5.13	6.73	4.98	3.93
LSD/sig	2.3	P≤0.01	P≤0.01	ns
PEDICEL LE	NGTH (mm	1)		
mean	21.7	23.0	25.9	18.2
std deviation	4.04	3.66	5.86	2.99
LSD/sig	2.09	ns	P≤0.01	P≤0.01
BEAK LENG	TH (mm)			
mean	8.95	13.11	15.09	9.28
std deviation	1.18	2.02	1.78	1.32
LSD/sig	0.75	P≤0.01	P≤0.01	ns
POD WIDTH	(mm)			
mean	4.54	4.76	4.61	4.61
std deviation	0.3	0.34	0.29	0.33
LSD/sig	0.14	P≤0.01	ns	ns

'TM8'

Application No: 1999/346 Accepted: 20 Jun 2000.

Applicant: Agriculture Victoria Services Pty Ltd, Attwood, VIC and

Grains Research and Development Corporation, Barton, ACT.

Agent: Ag-Seed Research Pty Ltd, Horsham, VIC.

Characteristics (Table 15, Figure 36) Plant: habit erect, height medium (118cm), medium early maturing. Seedling: cotyledon medium (width/length ratio 1.9), first true leaf few to numerous hairs, 5th leaf mostly lobed (98% lobed), colour green (RHS 137C, 1986). Flower: medium petals (length/width ratio 1.9), anther dotting present. Pods: medium long (51.3mm), pedicel medium (21mm), beak medium (10.7mm). Seed: black, canola quality. Herbicide resistance: tolerant to triazine herbicides.

Origin and Breeding Controlled pollination: 'TM8' was developed using a modified breeding method in 1996 from a cross, made in 1994, between two breeding lines, TI8*S and BLN896*S. The seed parent is characterised by later flowering and pollen parent is susceptible to triazine herbicides. During 1995 and 1996 the segregating material was selected for blackleg resistance and oil and protein content in nurseries at Lake Bolac and Horsham. In 1997 the variety was evaluated for yield and canola quality in a preliminary yield trial at Horsham. In 1998 the variety was entered into the interstate Stage 2 canola trials and then to Stage 4 trials in 1999, as TM8, and was trialled in a range of locations covering relevant canola growing regions of Australia for two years. Certified seed production occurred in 1999 and the variety was commercialised in 2000. Propagation: open pollinated seed. Breeder: Oilseeds team at Victorian Institute for Dryland Agriculture, Horsham, led by Mr Wayne Burton.

Choice of Comparators 'TI1 Pinnacle', 'Drum', and 'Karoo' were used as comparators. 'TI1 Pinnacle' has

been major medium maturing triazine tolerant canola variety in Australia since 1995. 'Karoo' is included as a major early maturity triazine tolerant canola variety, released in 1995. 'Drum' is a medium early maturity triazine tolerant canola variety. The parents were not considered for reasons mentioned above.

Comparative Trial Location: Comparative trials were conducted at Ag-Seed Research trial site at Horsham, VIC. Conditions: Field trials were conducted during 2000 season. Glasshouse trials were carried out in 2000 and 2001. Trial Design: data on mature plant characters were collected in replicated field trials consisting of six row, 5m plots laid out as randomised blocks. Seedling character data were collected in glasshouse trials designed as completely randomised trials. Measurement: data were recorded on 20 random plants from each of the three replicates giving a total of 60 observations per variety.

Prior Applications and Sales

No prior applications. First sold in Australia in 2000.

Description: Paul Rudolph, Ag-Seed Research Pty Ltd, Horsham, VIC.

Table 15 Brassica varieties

	'TM8'	*'TI1 Pinnac		⊕ *'Karoo'⊕
COTYLEDON	N WIDTH/	LENGTH		
mean	1.933	1.868	1.760	2.106
std deviation	0.142	0.122	0.115	0.136
LSD/sig	0.057	P≤0.01	P≤0.01	P≤0.01
EXTENT OF	HAIRS O	N FIRST TE	RUE LEAF	
absent	0	28	1	20
few	26	32	21	26
numerous	34	0	38	4
PERCENTAG	E OF LEA	F LOBING		
present	98.3	96.6	73.3	65
LOBE NUME	BER PER L	EAF WITH	LOBES	
mean	3.37	3.45	3.39	2.71
DAYS TO 509	% FLOWE	RING		
	110	114	110	108
PETAL LENC	GTH/WIDT	TH		
mean	1.89	1.84	1.83	1.66
std deviation	0.15	0.15	0.18	0.11
LSD/sig	0.06	ns	P≤0.01	P≤0.01
PERCENTAG	E OF ANT	THER DOT	ΓING	
present	95	90	35	100
SILIQUA LEI	NGTH (mr	n)		
mean	51.3	49.3	50.0	46.4
std deviation	5.37	4.38	4.82	5.43
LSD/sig	2.3	ns	ns	P≤0.01
PEDICEL LE	NGTH (mi	m)		
mean	21.0	17.5	19.5	18.5
std deviation	4.57	3.79	3.90	4.17
LSD/sig	1.88	P≤0.01	ns	P≤0.01
BEAK LENG	TH (mm)			
mean	10.7	8.09	8.49	10.22

std deviation LSD/sig	1.93 0.82	1.79 P≤0.01	1.67 P≤0.01	1.84 ns
POD WIDTH	(mm)			
mean	4.44	4.35	4.42	4.72
std deviation	0.36	0.36	0.42	0.49
LSD/sig	0.18	ns	ns	P≤0.01

'PACN164'

Application No: 2000/036 Accepted: 24 Feb 2000. Applicant: **Pacific Seeds Pty Ltd,** Toowoomba, QLD.

Characteristics (Table 16, Figure 37) Plant: habit bushy, height short, flowering and maturity early. Leaves: lobed, strong dentation, short, colour light green. Inflorescence: petal colour yellow, petal length short; width narrow. Siliqua: peduncle length medium-long, siliqua length medium-long, beak length medium-long. Seed: free of erucic acid.

Origin and Breeding Controlled pollination: seed parent 'Siren' x pollen parent breeding line PACN161 in 1996. The pollen parent was back-crossed three times on to the seed parent, followed by three generations of selection. The seed parent is characterised by being taller and much later than the candidate variety. The pollen parent is a noncommercial proprietary breeding line characterised by being susceptible to the chemical triazine. Selection criteria: in early generations selections were made on triazine tolerance, oil content, plant type, and maturity. The F_6 generation was evaluated in trials and used for subsequent seed increases. Propagation: by seed. Breeder: Andrew Easton, Pacific Seeds Pty Ltd, Toowoomba, QLD.

Choice of Comparators 'Karoo', 'Hylite 200TT', and 'Bugle' were selected as comparators as they exhibit early maturity and tolerance to triazine. The seed parent 'Siren' was excluded from the trial due to its much later maturity. The pollen parent was excluded from the trial, as it has no tolerance to the triazine chemical.

Comparative Trial Location: conducted at Gatton, QLD, sown on 5 June 2000. Conditions: sown by seed and normal agronomic practices were employed. Trial design: randomised complete block with three replicates. Measurements: two replicates were sampled to provide 30 random samples per replication.

Prior Application and Sales Nil.

Description: Heidi Young, Pacific Seeds, Toowoomba, QLD.

Table 16 Brassica varieties

'Pac N1	64'*'Karoo'	^{(↑} *'Bugle'	*'Hylite 200TT'()
OUR (Ligh	t, Medium, D	ark; Shades	of Green)
light	medium	medium	light
ITH LEAF	LOBES (Per	cent)	
100	100	11.7	100
E NUMBE	R		
5.38	4.77	0.52	5.57
	OUR (Light light ITH LEAF 100 E NUMBE	OUR (Light, Medium, E light medium ITH LEAF LOBES (Per 100 100	ITH LEAF LOBES (Percent) 100 100 11.7 EE NUMBER

Table 16 continued

LEAF: DENT	ATION OF	MARGIN		
	strong	weak	weak	strong
LEAF: LENG	TH (cm)			
mean	22.9	25.4	25.8	21.4
std deviation	1.95	2.55	2.20	2.10
LSD/sig	1.5	P≤0.01	P≤0.01	P≤0.01
LEAF: WIDT				
mean	9.0	10.1	9.1	8.3
std deviation	0.77	1.09	0.96	0.97
LSD/sig	0.7	P≤0.01	ns	P≤0.01
PETIOLE LE	NGTH: PI	ANT WITH	I I ORFD I	FAVES (cm)
. LIIOLL LL	8.6	11.8	10.7	9.5
	0.0	11.0	10.7	7.5
TIME OF FLO	OWERING	(Days after	r sowing: 5-	6-00 at Gatton,
(LD)	62	76	79	61
	02	, 0	"	01
PETAL LENC	GTH (mm)			
mean	11.5	13.4	11.85	n/a
std deviation	0.85	0.86	0.82	n/a
LSD/sig	1.9	P≤0.01	ns	n/a
202701g	1.,	1 =0.01	115	11/4
PETAL WIDT	TH (mm)			
mean	5.8	6.8	5.6	n/a
std deviation	0.65	0.62	0.67	n/a
LSD/sig	1.01	P≤0.01	n/s	n/a
PLANT HEIC		1.40.60	126.10	104.05
mean	115.18	142.68	136.10	104.97
std deviation	6.27	7.86	7.28	6.00
LSD/sig	10.21	P≤0.01	P≤0.01	P≤0.01
SILIQUA LEI	NGTH (mr	n)		
mean	59.85	53.18	53.90	57.60
std deviation		3.82	3.01	5.09
LSD/sig	5.95	P≤0.01	P≤0.01	ns
SILIQUA: LE	NGTH OF	BEAK (mr	n)	
	14.8	9.95	11.93	9.40
std deviation	1.5	2.13	1.82	1.40
LSD/sig	2.87	P≤0.01	P≤0.01	P≤0.01
202,016				
	NOTHO	DEDING	E ()	
SILIQUA: LE				17.45
SILIQUA: LE	22.25	16.05	18.82	17.45
SILIQUA: LE mean std deviation LSD/sig				17.45 1.59 P≤0.01

'Varola 50' syn Surpass 400

Application No: 2000/037 Accepted 24 Feb 2000 Applicant: **Pacific Seeds Pty Ltd**, Toowoomba, QLD.

Characteristics (Table 17, Figure 38) Plant: habit bushy, height medium-tall; flowering and maturity early. Leaves: lobed, medium dentation, short, colour dark green. Inflorescence: petal colour yellow, petal length long; width narrow. Siliqua: peduncle length short, siliqua length short, beak length short. Seed: free of erucic acid.

Origin and Breeding Controlled pollination: seed parent 'Polo' x pollen parent breeding line AB898 in 1995. The

seed parent is characterised by a very low level of blackleg resistance compared with the candidate variety. The pollen parent is a non-commercial proprietary breeding line developed by the applicant with high levels of erucic acid. Selection criteria: in early generations selections were based on blackleg resistance, oil content, plant type, and absence of erucic acid. The ${\rm F_6}$ generation was evaluated in trials and used for subsequent seed increases. Propagation: by seed. Breeder: Andrew Easton, Pacific Seeds Pty Ltd, Toowoomba, QLD.

Choice of Comparators 'Monty', 'Mystic', 'Rainbow', 'Georgie', and 'AG Emblem' were selected as comparators as they exhibit early to medium maturity. The seed parent 'Polo' was excluded from the trial as it has no resistance to blackleg. The pollen parent AB898 was excluded as it has high levels of erucic acid.

Comparative Trial Location: conducted at Gatton, QLD, sown on 5 June 2000. Conditions: sown by seed and normal agronomic practices were employed. Trial design: randomised complete block with three replicates. Measurements: two replicates were sampled to provide 30 random samples per replication.

Prior Application and Sales

Country South Africa 1999 Current Status Name Applied 'Varola 50'

No overseas sale. First Australian sale 2000.

Description: Heidi Young, Pacific Seeds, Toowoomba, QLD.

Table 17 Brassica varieties

	'Varola 50'	*'Monty'	*'Mystic'	*'Rainbow'	*'Georgie'	*'AG Emblem
LEAF: COLOUR	(Light, Medium, Da	rk; Shades of Green	n)			
	dark	medium	medium	medium	dark	medium
PLANTS WITH L	EAF LOBES (Perce	nt)				
	100	6.7	31.7	93.3	13.3	5.0
LEAF: LOBE NU	MBER					
	4.8	3.5	3.3	4.15	4.18	4.9
LEAF: DENTATION	ON OF MARGIN					
	medium	medium	medium	weak	weak	weak
LEAF: LENGTH	(cm)					
mean	25.8	26.6	30.6	28.3	30.1	30.1
std deviation	2.02	2.20	2.65	3.04	2.48	2.66
LSD/sig	2.50	ns	P≤0.01	P≤0.01	P≤0.01	P≤0.01
LEAF: WIDTH (c	m)					
mean	10.2	10.8	12.0	10.7	11.2	11.2
std deviation	0.88	1.21	1.70	1.31	1.33	1.49
LSD/sig	1.0	ns	P≤0.01	ns	P≤0.01	P≤0.01
		ODED LEAVES (
PETIOLE LENGI	TH: PLANT WITH L 10.7	DBED LEAVES (C 12.7	em) 12.4	13.9	20.6	13.1
TIME OF FLOWE	ERING (Days after se			70	5 0	0.2
	74	64	69	79	70	82
PETAL LENGTH						
mean	14.2	11.4	12.8	12.8	12.6	12.9
std deviation	0.69	0.96	0.85	1.43	1.03	1.39
LSD/sig	1.3	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01
PETAL WIDTH (1	mm)					
mean	6.3	6.2	6.6	7.6	5.6	7.7
std deviation	0.57	0.72	0.62	0.87	0.80	0.82
LSD/sig	0.7	ns	ns	P≤0.01	P≤0.01	P≤0.01
PLANT HEIGHT	(cm)					
mean	150.27	130.17	144.32	144.13	144.32	145.2
std deviation	6.57	8.14	8.26	8.91	7.14	7.45
LSD/sig	5.07	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01
SILIQUA LENGT	TH (mm)					
mean	52.48	56.97	65.35	54.72	62.22	57.08
std deviation	3.61	3.93	4.80	4.02	4.73	5.12
LSD/sig	4.49	P≤0.01	P≤0.01	ns	P≤0.01	P≤0.01
	ΓH OF BEAK (mm) 10.82	11.0	12.65	10.08	12.3	11.2
mean	1.23		1.84	2.03		
std deviation LSD/sig	1.48	2.1 ns	1.84 P≤0.01	2.03 ns	2.41 P≤0.01	1.49 ns
	TH OF PEDUNCLE		10.12	16 70	20.75	10.02
mean	16.35	18.18	19.12	16.78	20.75	19.03
std deviation LSD/sig	2.07	3.14 P<0.01	3.60 P<0.01	2.45	3.73	2.36
L.NL#\$10	1.83	P≤0.01	P≤0.01	ns	P≤0.01	P≤0.01

Chamelaucium megalopetalum x Chamelaucium uncinatum

Waxflower

'Albany Pearl'

Application No: 1998/097 Accepted: 30 Jun 1998. Applicant: **The State of Western Australia through its department of agriculture called**

Agriculture Western Australia, South Perth, WA.

Characteristics (Table 18, Figure 17) Plant: medium tall, erect vigorous. Stem: thickness medium, branch angle medium. Leaf: length medium, thickness thick, angle very narrow, apex acute. Flowering time: early. Flower: arrangement narrow distal, density medium, diameter medium. Bud: main colour with cap greenish white (RHS 157C), without cap white (RHS 155A). Petal: colour first opened white (RHS 155B), 2 weeks and 6 weeks after opening white (RHS 155A). Flower nectary: colour first opened yellow green (RHS 150A), 2 weeks and 6 weeks after opening yellow green (RHS 153C). Staminodia: outline narrow triangular, collar colour yellow white. Style: colour mature white. Calyx tube: longitudinal furrowing medium, outline conical, diameter medium, mid-point colour at mid maturity yellow green (RHS 144C). (Note: all RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Single hybrid plant selection: from open pollination of *C. megalopetalum* and *C. uncinatum* 'Alba' in a commercial planting at Flynn Rd, Wanneroo, WA and originally coded as HI 1. Selected at Wanneroo in Aug or Sep 1993. Vegetatively propagated plants were produced from the seedling in 1994 and found to be stable. Subsequent cutting propagated generations were produced in 1995, 1996 and 1997. All of these plants were found to be uniform and stable. The parentage was confirmed by DNA fingerprinting in 2000. 'Albany Pearl' was selected with seven other varieties of similar parentage[†]. Selection criteria: early flowering, pure white flower and green nectary over extended period, vigorous growth. Propagation: cutting. Breeder: Agriculture Western Australia.

Choice of Comparators 'Madonna', 'Blondie', 'Esperance Pearl' and 'Denmark Pearl' were considered as the most similar varieties on the basis of common parentage. The parents were not considered for the trial because 'Albany Pearl' has intermediate features between the two parents, including flower shape, flower presentation, leaf size, leaf shape, and size and form of the mature plants. 'Albany Pearl' is clearly distinguishable from the C. megalopetalum parent which is the most similar, by its vigorous growth habit and petal colour at late maturity. 'Early Bird' was excluded as 'Albany Pearl' is clearly distinguishable by its lack of hooked leaf tips; longer flower pedicel; less tight clusters of flowers; distinct cup-shaped flowers; and different parentage. 'Winter White' was excluded because it is distinguishable by its much smaller calyx tube diameter; green nectary; flat; and separated petal formation instead of cup-shaped.

Comparative Trial Location: Agriculture Western Australia Research Station, Medina, WA. Conditions:

plants propagated by cuttings and planted in open field of sandy soil with drip irrigation and fertigation. Trial design: 15 plants of each variety, replicated randomised block design. Measurements: made on 20 typical organs from all plants.

Prior Applications and Sales Nil.

Description: **Philip Watkins**, Sunglow Flowers Pty Ltd, Perth, WA and **Digby Growns**, Agriculture WA, Geraldton, WA.

'Denmark Pearl'

Application No: 1998/096 Accepted: 30 Jun 1998. Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

Characteristics (Table 18, Figure 17) Plant: short to medium tall, erect vigorous. Stem: thickness medium, branch angle medium. Leaf: length long, thickness medium, angle medium, apex acute to slight hook. Flowering time: medium. Flower: arrangement narrow distal, density medium to dense, diameter medium to large. Bud: main colour with cap red (RHS 43B), without cap white (RHS 155A). Petal: colour first opened white (RHS 155B), 2 weeks after opening white (RHS 155B), 6 weeks after opening white (RHS 155B). Flower nectary: colour first opened greyed yellow (RHS 160A), 2 weeks and 6 weeks after opening yellow green (RHS 153C). Staminodia: outline narrow triangular, collar colour white. Style: colour mature white. Calyx tube: longitudinal furrowing absent to slight, outline flared, diameter medium, mid-point colour at mid maturity yellow green (RHS 144C). (Note: all RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Single hybrid plant selection: from open pollination of *C. megalopetalum* and *C. uncinatum* 'Alba' in a commercial planting at Flynn Rd, Wanneroo, WA and originally coded HI 7. Selected at Wanneroo in Aug or Sept 1993. Vegetatively propagated plants were produced from the seedling in 1994 and found to be stable. Subsequent cutting propagated generations were produced in 1995, 1996 and 1997. All of these plants were found to be uniform and stable. The parentage was confirmed by DNA fingerprinting in 2000. 'Denmark Pearl' was selected with seven other varieties of similar parentage[†]. Selection criteria: mid-season flowering, pure white flower and green nectary over extended period, vigorous growth, dense flower heads. Propagation: cutting. Breeder: Agriculture Western Australia.

Choice of Comparators 'Madonna' (b), 'Blondie' (b), 'Esperance Pearl' and 'Albany Pearl' were considered as the most similar varieties on the basis of common parentage. The parents were not considered for the trial because 'Denmark Pearl' has intermediate features between the two parents, including flower shape, flower presentation, leaf size, leaf shape, and size and form of the mature plants. 'Denmark Pearl' is clearly distinguishable from the *C. megalopetalum* parent which is the most similar, by its vigorous growth habit and petal colour at late maturity. 'Winter White' was excluded because it is distinguishable by its much smaller calyx tube diameter; green nectary; flat and separated petal formation instead of cup-shaped.

Comparative Trial Location: Agriculture Western Australia Research Station, Medina, WA. Conditions: plants propagated by cuttings and planted in open field of sandy soil with drip irrigation and fertigation. Trial design: 15 plants of each variety, replicated randomised block design. Measurements: made on 20 typical organs from all plants.

Prior Applications and Sales Nil.

Description: **Philip Watkins**, Sunglow Flowers Pty Ltd, Perth, WA and **Digby Growns**, Agriculture WA, Geraldton, WA.

'Esperance Pearl'

Application No: 1997/138 Accepted: 19 Jun 1997.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

Characteristics (Table 18, Figure 17) Plant: medium tall, erect vigorous. Stem: thickness medium to thick, branch angle medium. Leaf: length medium, thickness thick, angle narrow, apex acute. Flowering time: very early. Flower: arrangement narrow distal, density medium, diameter medium to large. Bud: main colour with cap orange red (RHS 34A), without cap pink (RHS 65D). Petal: colour first opened pink to white (RHS 65D - 155B), 2 weeks after opening white (RHS 155C), 6 weeks after opening white with pink blush at base (RHS 155A). Flower nectary: colour first opened yellow green (RHS 144C), 2 weeks after opening yellow green to greyed orange (RHS 151A -173B), six weeks after opening greyed orange (RHS 173A). Staminodia: outline narrow triangular, collar colour white. Style: colour mature pink. Calyx tube: longitudinal furrowing absent to slight, outline flared, diameter medium, mid-point colour at mid maturity yellow green (RHS 150B). (Note: all RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Single hybrid plant selection: from open pollination of *C. megalopetalum* and *C. uncinatum* 'CWA Pink' X 'Alba' seedling in a commercial planting at Flynn Rd, Wanneroo, WA, and originally coded HI 8. Selected at Wanneroo in Aug or Sept 1993. Vegetatively propagated plants were produced from the seedling in 1994 and found to be stable. Subsequent cutting propagated generations were produced in 1995, 1996 and 1997. All of

these plants were found to be uniform and stable. The parentage was confirmed by DNA fingerprinting in 2000. 'Esperance Pearl' was selected with seven other varieties of similar parentage[†]. Selection criteria: early flowering, pure white flower and green nectary over extended period, vigorous growth, vigorous growth. Propagation: cutting. Breeder: Agriculture Western Australia.

Choice of Comparators 'Madonna', 'Blondie', 'Denmark Pearl' and 'Albany Pearl' were considered as the most similar varieties on the basis of common parentage. The parents were not considered for the trial because 'Esperance Pearl' has intermediate features between the two parents, including flower shape, flower presentation, leaf size, leaf shape, and size and form of the mature plants. 'Esperance Pearl' is clearly distinguishable from the *C. megalopetalum* parent which is the most similar, by its vigorous growth habit and petal colour at late maturity. 'Winter White' was excluded because it is distinguishable by its much smaller calyx tube diameter; green nectary; flat and separated petal formation instead of cup-shaped.

Comparative Trial Location: Agriculture Western Australia Research Station, Medina, WA. Conditions: plants propagated by cuttings and planted in open field of sandy soil with drip irrigation and fertigation. Trial design: 15 plants of each variety, replicated randomised block design. Measurements: made on 20 typical organs from all plants.

Prior Applications and Sales Nil.

Description: **Philip Watkins**, Sunglow Flowers Pty Ltd, Perth, WA and **Digby Growns**, Agriculture WA, Geraldton, WA.

[†]**Additional Information** The characteristics of these hybrids that distinguish them from *C. uncinatum* are the shorter, flatter leaf; the terminal presentation of the flowers; the bright yellow pollen on the style; the more erect staminodal ring; the more cupped shaped flowers; the waxiness of the petal; the much smaller gap between the petals; and the brighter green or yellow flower cup colour. They are different to *C. megalopetalum* in the longer, less flat leaf; the flatter flower; and in particular the plant vigour. That is, these hybrids show many intermediate characters between *C. uncinatum* and *C. megalopetalum*.

Table 18 Chamelaucium varieties

	'Esperance Pearl'	'Albany Pearl'	'Denmark Pearl'	*'Blondie'	*'Madonna' ⁽⁾
BRANCH ANGLE (degree) LSD (P≤0.01)	=1.74			
mean	43.0 ^c	43.7 ^c	37.8 ^b	32.8 ^a	43.4 ^c
std deviation	2.88	1.85	2.24	2.31	2.10
LEAF LENGTH (mr	n) LSD (P≤0.01)=0.60	<u> </u>			
mean	13.95 ^b	14.45 ^b	16.65 ^c	10.75 ^a	10.50 ^a
std deviation	1.02	0.67	1.11	0.89	0.50
LEAF THICKNESS	(mm) LSD (P≤0.01)=	0.044			
mean	1.24 ^c	1.15 ^b	0.99 ^a	1.01 ^a	1.04 ^a
std deviation	0.08	0.05	0.06	0.03	0.05

Table 18 continued

LEAF ANGLE (degree) I			_		1.
mean	14.9 ^b	10.05 ^a	26.1 ^c	24.75 ^c	15.6 ^b
std deviation	0.54	0.59	3.90	0.43	0.80
FIRST FLOWERING (da	ite)				
	14-Jun	29-Jun	16-Jul	11-Jun	12-Jul
	very early	early	medium	very early	medium
FLOWER DENSITY					
I LOWER DENSIT I	medium	medium	medium-dense	medium	sparse-medium
			medium-dense		sparse-medium
FLOWER DIAMETER (1		=0.50		0	
mean	17.05 ^d	13.75 ^b	15.75 ^c	12.30 ^a	15.35 ^c
std deviation	0.74	0.70	0.77	0.46	0.55
BUD MAIN COLOUR W	VITH CUP (RHS, 1	986)			
	34A	157C	43B	45A	46A
	orange-red	green-white	red	red	red
DID COLOUD WITHOU	UT CAD (DIIC 100				
BUD COLOUR WITHOU			155 A	155B	150C
	65D	155A white	155A white	white	158C yellow white
	pink —————————	WIIIC	WIIIC	WIIIC	yenow wille
PETAL COLOUR AT FIF	RST OPENING (RI				
	155B white	155B	155B	155B	155D
	– 65D pink	white	white	white	white
PETAL COLOUR AT TW	VO WEEKS VETEI	S OPENING (RHS	S 1986)		
I LITTLE COLOUR AT TW	155C	155A	155B	155A	155D white
	white	white	white	white	– 62C pink
PETAL COLOUR AT SIX			*		
	155A white	155A	155B	155A white	62C – 78C
	with pink at base	white	white	 80D violet at tips 	purple
NECTARY COLOUR AT	FIRST OPENING	(RHS, 1986)			
	144C	150A	160A	153B	153C
	yellow green	yellow green	greyed yellow	yellow green	yellow green
NECTARY COLOUR AT	TWO WEEKS VE	TED ODENING (DUC 1096)		
NECIANI COLOUNAI	151A yellow	153C yellow	153C yellow	178A greyed red	153C yellow green
		green		176A gieyeu ieu	- 173B greyed orange
	graan 17/3R	green	green		- 173b greyed drange
	green – 173B	_			
	greyed orange				
NECTARY COLOUR AT	greyed orange	ER OPENING (R	HS, 1986)		
NECTARY COLOUR AT	greyed orange SIX WEEKS AFT 173A	153C	153C	187A	173B
NECTARY COLOUR AT	greyed orange SIX WEEKS AFT 173A			187A greyed purple	173B greyed orange
	greyed orange SIX WEEKS AFT 173A greyed orange	153C	153C		
	greyed orange SIX WEEKS AFT 173A greyed orange E	153C yellow. green	153C yellow green	greyed purple	greyed orange
	greyed orange SIX WEEKS AFT 173A greyed orange E narrow	153C yellow. green	153C yellow green	greyed purple	greyed orange narrow
STAMINODIA OUTLIN	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular	153C yellow. green narrow triangular	153C yellow green	greyed purple	greyed orange
STAMINODIA OUTLIN	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS,	153C yellow. green narrow triangular	153C yellow green narrow triangular	greyed purple narrow triangular	greyed orange narrow triangular
STAMINODIA OUTLIN	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular	153C yellow. green narrow triangular	153C yellow green	greyed purple	greyed orange narrow
STAMINODIA OUTLIN STAMINODIA COLLAR	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS,	153C yellow. green narrow triangular	153C yellow green narrow triangular	greyed purple narrow triangular	greyed orange narrow triangular
STAMINODIA OUTLIN STAMINODIA COLLAR	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS, white	153C yellow. green narrow triangular	153C yellow green narrow triangular	greyed purple narrow triangular white	narrow triangular pink
STAMINODIA OUTLIN STAMINODIA COLLAR STYLE COLOUR	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS, white pink	153C yellow. green narrow triangular 1986) yellow white	153C yellow green narrow triangular white	greyed purple narrow triangular	greyed orange narrow triangular
STAMINODIA OUTLIN STAMINODIA COLLAR STYLE COLOUR	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS, white pink WING	narrow triangular 1986) yellow white	narrow triangular white	greyed purple narrow triangular white white-pink	narrow triangular pink
STAMINODIA OUTLIN STAMINODIA COLLAR STYLE COLOUR	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS, white pink	153C yellow. green narrow triangular 1986) yellow white	153C yellow green narrow triangular white	greyed purple narrow triangular white	narrow triangular pink
STAMINODIA OUTLIN STAMINODIA COLLAR STYLE COLOUR CALYX TUBE FURROW	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular C COLOUR (RHS, white pink VING absent-slight	narrow triangular 1986) yellow white	narrow triangular white	greyed purple narrow triangular white white-pink	narrow triangular pink
STAMINODIA OUTLIN STAMINODIA COLLAR STYLE COLOUR CALYX TUBE FURROW	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular C COLOUR (RHS, white pink VING absent-slight	narrow triangular 1986) yellow white	narrow triangular white	greyed purple narrow triangular white white-pink	narrow triangular pink
STAMINODIA OUTLIN STAMINODIA COLLAR STYLE COLOUR CALYX TUBE FURROW CALYX TUBE OUTLIN	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS, white pink VING absent-slight E flared	153C yellow. green narrow triangular 1986) yellow white white medium conical	153C yellow green narrow triangular white white absent-slight	greyed purple narrow triangular white white-pink absent-slight	narrow triangular pink pink absent-slight
STAMINODIA OUTLIN STAMINODIA COLLAR STYLE COLOUR CALYX TUBE FURROW CALYX TUBE OUTLIN CALYX TUBE DIAMET	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS, white pink VING absent-slight E flared ER (mm) LSD(P≤0	153C yellow. green narrow triangular 1986) yellow white white medium conical 0.01)=0.16	153C yellow green narrow triangular white white absent-slight flared	greyed purple narrow triangular white white-pink absent-slight conical	narrow triangular pink pink absent-slight conical
STAMINODIA OUTLIN STAMINODIA COLLAR STYLE COLOUR CALYX TUBE FURROW CALYX TUBE OUTLIN CALYX TUBE DIAMET mean	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS, white pink VING absent-slight E flared TER (mm) LSD(P≤C 7.14b	153C yellow. green narrow triangular 1986) yellow white white medium conical 0.01)=0.16 7.21b	153C yellow green narrow triangular white white absent-slight flared 7.30bc	greyed purple narrow triangular white white-pink absent-slight conical	pink pink absent-slight conical 6.83a
NECTARY COLOUR AT STAMINODIA OUTLIN STAMINODIA COLLAR STYLE COLOUR CALYX TUBE FURROW CALYX TUBE OUTLIN CALYX TUBE DIAMET mean std deviation	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS, white pink VING absent-slight E flared ER (mm) LSD(P≤0	153C yellow. green narrow triangular 1986) yellow white white medium conical 0.01)=0.16	153C yellow green narrow triangular white white absent-slight flared	greyed purple narrow triangular white white-pink absent-slight conical	narrow triangular pink pink absent-slight conical
STAMINODIA OUTLINE STAMINODIA COLLAR STYLE COLOUR CALYX TUBE FURROW CALYX TUBE OUTLINE CALYX TUBE DIAMET mean std deviation	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS, white pink VING absent-slight E flared TER (mm) LSD(P≤0 7.14b 0.20	narrow triangular 1986) yellow white white medium conical 0.01)=0.16 7.21 ^b 0.24	153C yellow green narrow triangular white white absent-slight flared 7.30bc	greyed purple narrow triangular white white-pink absent-slight conical	pink pink absent-slight conical 6.83a
STAMINODIA OUTLIN STAMINODIA COLLAR STYLE COLOUR CALYX TUBE FURROW CALYX TUBE OUTLIN CALYX TUBE DIAMET mean	greyed orange SIX WEEKS AFT 173A greyed orange E narrow triangular R COLOUR (RHS, white pink VING absent-slight E flared TER (mm) LSD(P≤0 7.14b 0.20	narrow triangular 1986) yellow white white medium conical 0.01)=0.16 7.21 ^b 0.24	153C yellow green narrow triangular white white absent-slight flared 7.30bc	greyed purple narrow triangular white white-pink absent-slight conical	pink pink absent-slight conical 6.83a

Note: mean values followed by the same letter are not significantly different at $P \le 0.01$ according Duncan's Multiple Range Test.

Chamelaucium uncinatum x Chamelaucium axillare Waxflower

'My Sweet Sixteen'

Application No: 1998/250 Accepted: 2 Dec 1998. Applicant: **Western Flora,** Coorow, WA.

Characteristics (Table 19, Figure 16) Plant: habit bushy, height medium. Stem: thickness medium, branch angles medium. Leaf: length medium, thickness medium, apex acute, angle erect. Flower: season spring, distal narrow, flower type single, dense, size small-medium, bud main colour with cap green (RHS 137D), apical colour with cap lost white (RHS 155D), young flower petal colour white (RHS 155D), petal colour development fast, petal main colour at mid maturity red-purple (RHS 62A), young flower nectary colour yellow-green (RHS 146A), flower nectary colour at mid maturity yellow-green (RHS 144A-B), staminodia outline medium, staminodia collar colour red, calyx tube mature colour pink (RHS 56C), style mature colour red-purple, calyx tube longitudinal furrowing strong, outline flared, mid point colour yellow-green (RHS 144B). (Note: All RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Controlled pollination: seed parent 'Snowflake' x pollen parent *Chamelaucium axillare*. The seed parent is more vigorous, narrower leaves, flowers white maturing to pale pink. The pollen parent is not bushy, lighter colour and thicker leaves, sparser and larger flowers, mature flower colour not uniform. Hybridisation took place at Western Flora, Coorow, WA in 1993. Nine mature fruit were recovered from the seed parent and five embryos were rescued and germinated *in vitro*. Seedlings were multiplied *in vitro* to a sufficient number to deflask and grow in the nursery. Plants were potted into 180mm plastic pots and grown to flowering stage. Selection criteria: 'My Sweet Sixteen' was selected for its stability, uniform habit, rich green leaves, flower density and colour, flowering time. Propagation: vegetative. Breeder: Brian Jack, Coorow, WA.

Choice of Comparators Both parents, 'Snowflake' and *C. axillare*, were chosen as comparators as they are the closest varieties of common knowledge.

Comparative Trial Location: Coorow, WA. Latitude 30° S, longitude 116° E, elevation 170m. Conditions: the trial was conducted in a shade house with 50% knitted green shade cloth roof. Plants were potted into 180mm black plastic pots, potting mix, sand coco peat perlite with slow release fertiliser and micronutrients. Media was steam/air treated at 62° C for 30 mins then cooled rapidly to ambient temperature. Plants were regularly sprayed with fungicides and with insecticides when necessary. Trial design: 10 pots of each variety were arranged in random in rows. Measurements: taken at random from all trial plants.

Prior applications and sales

No prior applications. First sold in Australia in Aug 1998.

Description: Brian Jack, Coorow, WA.

Table 19 Chamelaucium varieties

'My Sweet Sixteen'	*'Snowflake'	*C. axillare
	1.	4. 1.
medium	medium	thin-medium
H (MATURE N medium		RY LEAVES) medium-long
WITH FLOW	ERING STEM erect	semi-erect
NNING OF FI	LOWERING	
late	medium	late
BRANCHES: F	PREDOMINAN	T LOCATION OF
narrow	narrow	broad
SITY		
dense	dense	medium
METER small-	medium	medium
medium		
DLOUR WITH 137D	BUD CAP (R 138A	HS, 1986) 137B
JR DEVELOP fast	PMENT slow	medium
COLOUD AT	MID MATUDI	TV (DHS 1096)
62A	56C	61B
ER: NECTAR	Y COLOUR (F	RHS, 1986)
146A	146C	144C
ΓARY: COLO	JR AT MID-M	ATURITY
144A-B	187A	145B
OUTLINE medium	narrow	medium
COLLAPCO	I OUD	
red	pink	pink
COLOUR (M 56C	ATURE) (RHS 155D	, 1986) 61A
UR (MATURE	(i)	
red-purple	white	pink-purple
LONGITUDI	NAL FURROW	/ING
strong	strong	slight
	Sixteen' NESS medium H (MATURE Medium SESS (MATURE Medium WITH FLOW METH FLOW METH FLOW METH METH METH METH METH METH METH METH	NESS medium medium H (MATURE NON-AXILLAI medium medium-long RESS (MATURE NON-AXIL medium medium-long RESS (MATURE NON-AXIL medium medium WITH FLOWERING STEM erect erect NNING OF FLOWERING late medium BRANCHES: PREDOMINAN narrow narrow SITY dense dense METER small- medium medium DLOUR WITH BUD CAP (R 137D 138A UR DEVELOPMENT fast slow COLOUR AT MID-MATURI 62A 56C FER: NECTARY COLOUR (F 146A 146C TARY: COLOUR AT MID-M 144A-B 187A OUTLINE medium narrow COLLAR COLOUR red pink COLOUR (MATURE) red-purple white

Clematis serratifolia Clematis

'Kugotia' syn Tiara Gold

Application No: 1997/106 Accepted 5 Aug 1997. Applicant: **H.J.M. Kuijf**, Uithoorn, The Netherlands. Agent: **Plants management Australia**, Wonga Park, VIC.

Characteristics (Table 20, Figure 9) Plant: habit, medium dense, vigorous, perennial, climber. Stem: annually growing approximately 2 meters long, young growing tip pubescent becoming glabrous with maturity, anthocyanin often present on upper surface when mature, ribbing present. Leaf: pinnately compound, leaflets 7 to 9, upper usually simple lower usually ternate to cleft, lanceolate, apex acuminate to acute, base cuneate to obtuse, irregularly serrate, curling, petiole glabrous slightly connate. Flower: solitary, axillary on young shoots, bud almost orbicular, upright at first then nodding, pedicel mean length (88.3mm), flower bisexual, nodding, first open campanulate but spreading with maturity, 4 tepals (mean width 13mm, length 29mm), colour deep yellow (RHS 9A) on both sides, apex acute sparsely pubescent, filaments uneven length, purple colour (RHS 79A), pistil initially shorter than stamens but elongate during maturity, stigma yellow glabrous. Flowering time: December to April. Fruit: upright, achene with a persistent plumose style. (Note: All RHS colour chart numbers refer to 1995 edition.)

Origin and Breeding Open-pollination followed by seedling selection: originated from seeds harvested from a open-pollination of 'Golden Harvest' which was being grown among a large collection of various Clematis varieties in Kuijf, Uithoorn, The Netherlands in 1994. From these seeds a batch of seedlings were grown and one seedling was selected because of its particularly desirable attributes. The new variety is similar in appearance to 'Golden Harvest' but differs in having larger flowers, which are of darker colour and with the tepal being pubescent inside. Selection criteria: flower colour, size and plant vigour. Propagation: from this original seedling propagation was by asexual means (cuttings) and the was found to be uniform and stable. 'Kugotia' will be commercially propagated by vegetative cuttings from stock plants. Breeder: H.J.M. Kuijf, Uithoorn, The Netherlands.

Choice of Comparators *C. serratifolia* was chosen as it is the most similar variety of common knowledge of the same species. The seed parent 'Golden Harvest' was not included in the trial due to the reasons mentioned above. *C. tangutica* was initially considered due to similar, but lighter flower colouring but was excluded as it is a different species.

Comparative Trial Location: Park Orchards, VIC, Feb 2000 to Feb 2001. Conditions: conducted in shade house with 50% cover. Plants propagated by cuttings and potted into initially 140mm then 200mm containers filled with a soilless pine bark based potting media and using a controlled release fertilizer. Pest and disease treatments applied as necessary. Trial design: 10 pots of each variety completely randomized. Measurements: One sample taken per plant.

Prior Applications and Sales

Country	Year	Current Status	Name Applied
The Netherlands	1994	Granted	'Kugotia'
EU	1995	Granted	'Kugotia'
USA	1997	Granted	'Kugotia'
New Zealand	2000	Applied	'Kugotia'

First sold in The Netherlands in Apr 1995. First Australian sale Mar 2000.

Description: Steven Eggleton, Lilydale, VIC.

Table 20 Clematis varieties

	'Kugotia'	*C. serratifolia
LEAFLET: SERRA	TIONS	
	few	numerous
TEPAL WIDTH (m	ım)	
mean	13	7.6
std deviation	1.4	0.8
LSD/sig	1.7	P≤0.01
TEPAL LENGTH (mm)	
mean	29	19.6
std deviation	2.2	2.6
LSD/sig	3.3	P≤0.01
PEDICEL LENGT	H (mm)	
mean	88.3	37.4
std deviation	15.7	3.4
LSD/sig	14.2	P≤0.01
TEPAL COLOUR ((RHS, 1995)	
	9A	10B
FILAMENT COLC	OUR (RHS, 1995)	
	79A	79C

Coprosma hybrid Coprosma

'Cappuccino'

Application No: 2000/333 Accepted: 26 Feb 2001. Applicant: **Annton Nursery**, Cambridge, New Zealand. Agent: **Greenhills Propagation Nursery**, Tynong, VIC.

Characteristics (Table 21, Figure 19) Plant: habit small shrub. Leaf: length small (mean 10.16mm), width small (mean 6.61mm), shape obovate, tip rounded, base cuneate, margin undulation absent or very weak, main colour green 137D, secondary colour brown 200A, glossiness absent or very weak. (Note: All RHS colour chart numbers refer to 1995 edition.)

Origin and Breeding Seedling selection: arose as a seedling selection from likely parent 'Coppershine' at the breeders property at Cambridge, New Zealand in 1998. Cuttings were taken in 1998, and grown on for observation for the conformation of uniformity and stability of the selection. Selection criteria: leaf size and colour and plant habit. Propagation: vegetative through at least 3 generations. Breeder: Ann Burton, Cambridge, New Zealand.

Choice of Comparators 'Karo Red', 'Yvonne' and 'Coppershine' were chosen because they are the closest known varieties of common knowledge. 'Coppershine' is the most likely parent. No other varieties were considered similar to include in the trial.

Comparative Trial Location: Tynong, VIC, autumn-spring 2000. Conditions: trial conducted in open, plants propagated from cutting, rooted cuttings planted into 140mm pots filed with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten pots of each variety arranged in a completely randomised design. Measurements: from forty plants at random. One sample per plant.

Prior Applications and Sales

Country Year Current Status Name Applied
New Zealand 2000 Accepted 'Cappuccino'

Description: Mark Lunghusen, Croydon, VIC.

Table 21 Coprosma varieties

	'Cappuccino'	*'Karo Red'	*'Yvonne'	*'Coppershine'
LEAF: LENG	TH (mm)			
mean	10.16	29.43	41.05	33.00
std deviation	0.77	2.13	4.35	2.43
LSD/sig	2.99	P≤0.01	P≤0.01	P≤0.01
LEAF: WIDT	H (mm)			
mean	6.61	17.94	24.27	14.58
std deviation	0.51	1.22	2.17	0.57
LSD/sig	1.35	P≤0.01	P≤0.01	P≤0.01
LEAF: LENG	TH TO WID	TH RATIO)	
mean	1.54	1.64	1.69	2.26
std deviation	0.05	0.10	0.08	0.10
LSD/sig	0.09	P≤0.01	P≤0.01	P≤0.01
LEAF: SHAP	E OF BLAD	·E		
	obovate	ovate	ovate	obovate
LEAF: SHAP	E OF TIP			
	rounded	acute	obtuse	rounded
LEAF: SHAP	E OF BASE			
	hastate	cuneate	cuneate	hastate
LEAF: UNDU	JLATION O	F MARGIN	N	
	absent or very weak	strong	medium	strong
LEAF: MAIN	COLOUR (RHS, 1995	5)	
	green	brown	green	green
	137D	200A	137A	137A
LEAF: SECO	NDARY CO	LOUR (RI	HS, 1995))	
	brown	green	brown	brown
	200A	141A	200A	200A
LEAF: GLOS				
	absent or very weak	medium	strong	medium

Cuphea hyssopifolia False Feather, Cuphea

'Lemon Squash'

Application No: 2000/123 Accepted: 28 Apr 2000. Applicant: **The Shadehouse Nursery,** Blackstone, QLD.

Characteristics (Table 22, Figure 22) Plant: small, bushy, upright, evergreen, perennial shrub with compact yellow foliage and pale mauve flowers. Stem: yellow green (RHS 144C), with short internodes. Leaf: small, lanceolate, colour of emerging leaves yellow green (RHS 145A), and mature leaves green (RHS 144A). Flower: violet (RHS 84B), no fading on maturity, very floriferous and flowers are evenly spread over the whole bush. (Note: all RHS colour chart numbers refer to 1995 edition).

Origin and Breeding Open pollination followed by seedling selection: seed parent *Cuphea* 'Golden Ruby'. The seed parent was selected for its strong yellow – green foliage colour. 'Lemon Squash' was selected, in a planned breeding program, from a batch of open-pollinated seedlings at Theo's Discount Nursery, QLD in 1997. Selection criteria: compact growth habit and light yellow-green foliage colour. Propagation: vegetative through many generations and were found to be uniform and stable. Commercially it will be propagated by cuttings. Breeder: Bruce Whitfield, Kallangur, QLD.

Choice of Comparators 'Shona' and 'Golden Ruby' were selected as the comparators for this trial as both are similar varieties of common knowledge. 'Golden Ruby' is also the maternal parent of the candidate variety. 'Alba' was initially considered but later was rejected because of its white flower colour.

Comparative Trial Location: Carol's Propagation, Capalaba, QLD. Jul – Nov 2000. Conditions: cuttings were struck under mist and then grown in the open. Ten plants of each variety were potted into 125mm pots in soiless media. Plants were not pruned during the trial. Nutrition was maintained with controlled release fertilizer. Pests and disease management applied as required. Trial design: randomized block of 10 plants of each variety. Measurements: taken from all plants at 4 months.

Prior applications and Sales

First sold in Australia in Mar 2000. No prior overseas sales.

Description: Carolynn Milne, Carol's Propagation, Capalaba, QLD.

Table 22 Cuphea varieties

	'Lemon Squash'	*'Golden Ruby'	*'Shona'
FOLIAGE CO	DLOUR (RHS, 19	995)	
emerging	yellow green	yellow green	yellow green
	145B	144C	150A
mature	yellow green	yellow green	yellow green
	145A	144A	144A
FLOWER CO	LOUR (RHS, 19	95)	
	violet	red purple	purple violet
	84B	74A	81A

Table 22 continued

STEM COLOUR (RHS, 1995)

yellow green red purple red purple
144C 60A 60A

Eragrostis elongata Lovegrass

'Elvera'

Application No: 1997/167 Accepted: 7 Aug 1997. Applicant: **Todd Layt,** Clarendon, NSW.

Characteristics (Table 23, Figure 55) Plant: dense, large, compact, attractive ornamental grass. Leaves: colour mid green, glabrous, flat, leaf to seed head ratio high so that the flowering culms are just above the main leaf mass or tussock. Inflorescence: long with many branches, individual side flowers short but with expanded ends creating a knoblike appearance where the florets are congested. Florets: mostly appressed to the culm, with sub-sessile spikelets, spikelets colour lavender. Seed: colour deep purple.

Origin and Breeding Single plant selection: 5000 plants were grown from a seed batch of *Eragrostis elongata* collected from Sydney area. In the first cycle of selection, six plants were selected for their purple flower head colour. These were planted and monitored for a year. In the second selection cycle, one plant was selected that had a taller leaf to seed head ratio but a shorter seed head than the parent and a shorter flower head. Seed was collected from this plant and 100 plants grown. Seed from these plants was grown and the resulting plants used in the trial as 'Elvera'. Selection criteria: longer living, taller leaf, tiller growth, deep purple seed colour. Propagation: seed. Breeder: Todd Layt, Clarendon, NSW.

Choice of Comparators The parental type and a similar Victorian ecotype were chosen as comparators. No other similar varieties of common knowledge have been identified.

Comparative Trial Location: Abulk, Clarendon, NSW. Condition: trial conducted in 125mm pots, potting mix was ANL No. 2 mix. 4 to 5 month Osmocote® was used twice, irrigated. Trial design: 30 pots of each generation of the candidate and 45 pots of each comparators were arranged in a completely randomised design. All plants were treated equally and trimmed at 3 months after planting. Measurements: taken from 10 plants selected at random from each comparator and the candidate plant.

Prior Applications and Sales

No prior applications. 'Elvera' was first sold in Australia in spring 1997.

Description: Brian Quinn, Newham, VIC.

Table 23 *Eragrostis* varieties

	'Elvera'	U	ata * E. elongata
		Parental Type	Victorian Ecotype
		Турс	Leotype
WIDTH OF FI	LAG LEAF –	Taken at Wide	st Point (mm)
mean	4.09	3.41	3.15
std deviation	0.47	0.71	0.41
LSD/sig	0.83	ns	P≤0.01
FLAG LEAF I	LENGTH (mn	n)	
mean	108.10	216.20	127.20
std deviation	26.73	58.94	29.31
LSD/sig	58.80	P≤0.01	ns
	M FLAG LE	AF TO END C	F FLOWERING
CULM	07.60	227.60	155.00
mean	97.60	227.60	155.30
std deviation	28.73	77.78	51.79
LSD/sig	101.63	P≤0.01	ns
		FLORESCENC	E – from Junction
with Culm to I	End (mm)		
mean	9.80	15.60	29.20
std deviation	1.62	3.59	12.98
LSD/sig	11.24	ns	P≤0.01

Festuca arundinacea Tall Fescue

'Prosper'

Application No: 2000/039, Accepted 29 Mar 2000.

Applicant: Barenbrug Research, Oosterhout, The

Netherlands.

Agent: Heritage Seeds Pty Ltd, Mulgrave, VIC.

Characteristics (Table 24, Figure 57) Ploidy: hexaploid. Plant: Mediterranean type forage tall fescue. Stem: long, with very long upper internode. Leaf: vegetative leaves long narrow, flag leaf very long. Flower: inflorescence very long, short awned spikelets (13.06mm), medium heading (56.1days).

Origin and Breeding Mass selection: two cycles of mass selection from *Festuca arundinacea* plant collections in Manutauban, France. Selection criteria: rust resistance, winter vigour, rapid establishment. 'Prosper' is distinct for the original source material in heading date, lack of aftermath heading, flag leaf length (long), vegetative leaf width (narrow), upper internode length (long). Propagation: 'Prosper' is maintained by open pollination through four generations. It will be commercially propagated by seed. Breeder: Barenbrug Research, Oosterhout, The Netherlands.

Choice of Comparators Tall fescue varieties, 'Grasslands Advance', 'Bombina', 'Encore', 'Flecha', 'Fraydo', 'Midwin', 'Resolute' were considered as comparators as these are the similar varieties of common knowledge in Australia. In addition, New Zealand varieties 'Au Triumph', 'Dovey', 'Quantum', 'Torpedo' and 'Vulcan' were also included in the trial. These varieties were found to be distinct from 'Prosper' in at least two or more

characteristics in the combined over year distinctness (COYD) analysis and therefore omitted from the comparative table. The parental plants were not considered for reasons stated above.

Comparative Trial The description published here in is sourced from NZ PVRO Number FES008 dated June 2000. Location: trial conducted at Lincoln, New Zealand during 1999-2000. Conditions: plants raised in the glasshouse, autumn transplanted, Trial design: randomised block of 100

plants per variety. Measurements: from 60 plants taken at random.

Prior Applications and Sales

CountryYearCurrent StatusName AppliedNew Zealand1999Granted'Prosper'

Prior sale Nil.

Description: F E Wilson, New Zealand Agriseeds Limited.

Table 24 Festuca varieties

	'Prosper'	'Grasslands Advance'	'Bombina'	'Encore'	'Flecha'	'Fraydo'	'Midwin' [⊕]	'Resolute
DAYS TO HEAD	ING							
mean	56.1	60.3	67.9	62.9	54.9	51.6	63.0	52.4
std deviation	4.78	5.84	5.59	6.48	5.41	4.61	5.10	4.55
LSD/sig	2.47	P≤0.01	P≤0.01	P≤0.01	ns	P≤0.01	P≤0.01	P≤0.01
FLAG LEAF LEN	IGTH (mm)							
mean	288	186	195	203	264	275	239	303
std deviation	57.85	55.93	49.99	58.54	53.47	52.14	49.57	64.79
LSD/sig	22.4	P≤0.01	P≤0.01	P≤0.01	P≤0.01	ns	P≤0.01	ns
FLAG LEAF WID	OTH (mm)							
mean	9.42	9.10	7.85	7.75	8.79	9.05	9.36	9.65
std deviation	1.52	2.63	1.37	1.38	1.37	1.69	1.50	1.24
LSD/sig	0.79	ns	P≤0.01	P≤0.01	ns	ns	ns	ns
STEM LENGTH ((mm)							
mean	1345	1142	898	881	1297	1260	1278	1180
std deviation	167.3	160.1	104.6	122.5	174.0	137.4	110.5	142.88
LSD/sig	68.7	P≤0.01	P≤0.01	P≤0.01	ns	P≤0.01	ns	P≤0.01
VEGETATIVE LE	EAF LENGTH (mm)						
mean	325	302	256	265	318	365	345	356
std deviation	5.52	4.29	4.98	4.87	5.42	4.13	6.73	4.99
LSD/sig	29.1	ns	P≤0.01	P≤0.01	ns	P≤0.01	ns	P≤0.01
VEGETATIVE LE	EAF WIDTH (m	ım)						
mean	9.51	11.17	8.85	8.75	9.57	10.33	9.97	10.18
std deviation	1.07	1.43	1.04	1.03	1.14	1.54	1.39	1.26
LSD/sig	0.75	P≤0.01	ns	P≤0.01	ns	P≤0.01	ns	ns
UPPER INTERNO	DDE LENGTH	(mm)						
mean	604	409	341	337	583	558	545	525
std deviation	104.03	80.30	65.59	75.73	130.25	110.29	85.09	104.34
LSD/sig	43.3	P≤0.01	P≤0.01	P≤0.01	ns	P≤0.01	P≤0.01	P≤0.01
SPIKELET LENC	TH (mm)							
mean	13.06	15.50	14.54	14.26	13.50	12.78	13.72	12.98
std deviation	1.56	2.51	2.09	1.88	1.42	1.37	1.56	1.70
LSD/sig	0.94	P≤0.01	P≤0.01	P≤0.01	ns	ns	ns	ns

Ficus elastica India Rubber Tree

'Svlvie'

Application No: 1997/306 Accepted: 19 Nov 1997. Applicant: **Rene GMA Denis**, Beervelde, Belgium. Agent: **Yates Botanicals Pty Limited**, Tuggerah, NSW.

Characteristics (Figure 25) Plant: young plants erect with woody upright main stem, typical Ficus elastica shape, branching relatively rare. Leaf: elliptic to acuminate with distinct mucronate tip 10 to 15mm long, size approx. 180 to 240cm long, 90 to 150cm wide, smooth margin, leaf surface slightly undulating. Petiole: about 20 to 35mm long, colour RHS 59A-B ageing to RHS 62B with a green tinge (RHS 62B to 73B), midrib very prominent, finer parallel veins arising from midrib extending almost to the margin at about 15 degree. Leaf colour: variegated with green irregular markings arising from the midrib covering approximately 50% of the leaf, margins of variegations very distinct; older or mature leaves upper surface background colour RHS 158A (156B), variegations colour RHS 139A changing with clear surroundings from greyed-green RHS 191A (189A) to RHS 190A-B; younger leaves have same markings which changes from RHS 191A (189A) to RHS 190A-B with background colour RHS 162D (160C); lower surface has same colour RHS 162D (160C) as on the upper surface, dark marking absent on the lower surface; upper surface midrib initially colour ca. RHS 53B ageing to RHS 62B with a green tinge (62B to 73B); lower surface midrib colour same as the upper surface midrib colour; opening leaf has background colour RHS 180C. Terminal bud: colour RHS 53B. (Note: the data in parenthesis is the RHS colour as described in the original US Plant Patent. All RHS colour chart number refers to 1995 edition.)

Origin and Breeding Spontaneous mutation: from *Ficus elastica* 'Belga' in applicant's property in Belgium in 1989. The leaf colour of 'Sylvie' is white to light yellow, with dark green variegation of varying dimension from the midrib to both sides. The leaf colour can be compared with the parent 'Belga', which is also white, but the amount of white colour in 'Sylvie' is much larger compared to the green, which results in a totally different looking plant. Selection criteria: unique leaf colour. Propagation: asexually by cuttings and tissue culture. Breeder: Rene GMA Denis, Beervelde, Belgium.

Choice of Comparators The parental variety 'Belga' (US Plant Patent 2220) is considered as the most similar variety of common knowledge. 'Sylvie' is identical in leaf colour to 'Belga' except for area of variegation. However, where this marking comprises 90 to 95% of the leaf surface of the parent 'Belga', the marking of 'Sylvie' is restricted to approximately 50% of the leaf surface. Thus, where the white colour of 'Belga' is restricted to marginal variegation of the leaf, the white colour of 'Sylvie' comprises a dominating colour of the leaf.

Comparative Trial Description is based on US patent Plant 8,895, dated Sep 13, 1993. The detailed description published herein was verified based on plants grown at Yates Botanicals, Pacific Highway, Tuggerah, NSW (33° 17′S, 151° 24′E, elevation 25m), spring-summer

1998-99, Conditions: fifteen plants grown in a fibreglass covered greenhouse, plants propagated by tissue culture, deflasked into cell trays and established plants transplanted into 200mm pots filled with soilless potting mix (peat/pine bark base), nutrition maintained with slow release and liquid fertilisers, pest and disease treatments applied as required.

Prior Applications and Sales

Country	Year	Current Status	Name Applied
USA	1993	Granted	'Sylvie'
Belgium	1994	Terminated	'Sylvie'
EU	1995	Applied	'Sylvie'
The Netherlands	1991	Terminated	'Sylvie'

First sold in Australia in Mar 1997.

Description: Ross Worrall, NSW Agriculture, Gosford, NSW.

Hebe hybrid **Hebe**

'Southern Sunrise'

Application No. 1999/221 Accepted: 19 Oct 1999. Applicant: **Bryan E. Jackson**, Dromana, VIC.

Characteristics (Table 25, Figure 20) Plant: evergreen spreading shrub. Stem: glaucous, colour yellow green (RHS 144C) when young, density of foliage dense. Leaf: sessile, glabrous, glossy, medium elliptic, apex obtuse, base attenuate, margin entire, colour yellow green (RHS 147A) on upper side and (RHS 147B) on lower side. Inflorescence: raceme, flowers in clusters developing from basal end first. Flower: number of sepals four, colour green, number of petals four colour red purple, white at base of raceme. Petal: colour at dehiscence red purple (RHS 65A-B). Stamen: number two, filament colour pale red purple, anther colour dark red purple, stigma dark red purple. (Note: all RHS numbers referred to were based on the 1986 edition.)

Origin and Breeding Open pollination followed by seedling selection: 'Southern Sunrise' was originated from an open-pollination between *Hebe* 'Oratia Beauty' and 'Wiri Joy' at applicant's nursery. Selection criteria: from this open-pollination a seedling was chosen on the basis of flower colour, prolific flowering, and glossy foliage. Propagation: a number of mature stock plants were generated from the original seedling by cuttings through several generations to confirm uniformity and stability. 'Southern Sunrise' will be commercially propagated by cuttings. Breeder: Stephen Membery, Frankston, VIC.

Choice of Comparators Both parents, 'Oratia Beauty' and 'Wiri Joy' are considered as similar varieties of common knowledge and were included in the trial.

Comparative Trial Location: Dromana, VIC between Jan 2000 and Jan 2001. Conditions: outdoors under ambient southern Victorian (Latitude 38°S) conditions; plants begun as cuttings Jan 2000, transplanted to 200 mm pots Mar 2000; media soilless, fertiliser, controlled release. Trial design: randomised block. Measurements: ten to twenty specimens selected from ten plants.

Prior Applications Nil.

First sold in Australia in Oct 1999.

Description: David Nichols, Rye, VIC.

Table 25 Hebe varieties

	'Southern Sunrise'	*'Oratia Beauty'	*'Wiri Joy'
PLANT HEIGH	HT (cm)		
mean	29.9	43.3	39.7
std deviation	3.2	2.3	5.1
LSD/sig	5.0	P≤0.01	P≤0.01
PLANT WIDT	H (cm)		
mean	44.6	50.3	52.8
std deviation	5.9	4.9	7.8
LSD/sig	5.0	P≤0.01	P≤0.01
) fifth node dow	vn from terminal
leaf pair on tall		12.0	10.0
mean	8.7	12.0	18.9
std deviation	1.8	4.8	3.6
LSD/sig	4.0	ns	P≤0.01
STEM CHARA density of folia			
actionly of folia	dense	dense	medium
anthaavanin			
anthocyanin	absent	slight	medium to strong
colour of young	g stem RHS (19 144C	986) 146D	147A-B, 146D
LEAF LENGT	H (mm) two la	rgest leaves	
mean	48.3	43.7	67.8
std deviation	3.3	3.2	5.4
LSD/sig	3.3	P≤0.01	P≤0.01
LEAF WIDTH	(mm) two larg	est leaves	
mean	17.2	17.9	14.8
std deviation	1.0	1.2	0.6
LSD/sig	0.8	ns	P≤0.01
LEAF CHARA	CTERISTICS		
shape of blade	medium	medium	narrow
•	elliptic	elliptic	elliptic
shape of apex	obtuse	mucronulate	mucronulate
NUMBER OF	STEMS PER I	PLANT WITH I	NFLORESCENCE
mean	20.2	9.1	16.1
std deviation	6.8	2.4	5.0
LSD/sig	5.8	P≤0.01	ns
PEDUNCLE L	ENGTH (mm)		
	ENGTH (mm) 11.7	16.1	20.8
mean			20.8 2.0
mean std deviation	11.7	16.1	
mean std deviation LSD/sig PEDUNCLE W	11.7 2.1 2.7 /IDTH (mm)	16.1 3.3 P≤0.01	2.0 P≤0.01
mean std deviation LSD/sig PEDUNCLE W mean	11.7 2.1 2.7 /IDTH (mm) 1.8	16.1 3.3 P≤0.01	2.0 P≤0.01
mean std deviation LSD/sig	11.7 2.1 2.7 /IDTH (mm)	16.1 3.3 P≤0.01	2.0 P≤0.01
LSD/sig PEDUNCLE W mean	11.7 2.1 2.7 /IDTH (mm) 1.8	16.1 3.3 P≤0.01	2.0 P≤0.01
mean std deviation LSD/sig PEDUNCLE W mean std deviation LSD/sig FLOWER HEIG	11.7 2.1 2.7 /IDTH (mm) 1.8 0.2 0.1	16.1 3.3 P≤0.01 2.2 0.1 P≤0.01	2.0 P≤0.01 1.2 0.1 P≤0.01
mean std deviation LSD/sig PEDUNCLE W mean std deviation LSD/sig FLOWER HEIG mean	11.7 2.1 2.7 /IDTH (mm) 1.8 0.2 0.1 GHT (mm) fro 6.6	16.1 3.3 P≤0.01 2.2 0.1 P≤0.01 m base of ovary 6.6	2.0 P≤0.01 1.2 0.1 P≤0.01 7 to top of petal 8.6
mean std deviation LSD/sig PEDUNCLE W mean std deviation LSD/sig FLOWER HEIG	11.7 2.1 2.7 /IDTH (mm) 1.8 0.2 0.1	16.1 3.3 P≤0.01 2.2 0.1 P≤0.01	2.0 P≤0.01 1.2 0.1 P≤0.01

FLOWER WIDTH (mm) across top of petals						
mean	5.9	5.8	8.1			
std deviation	0.3	0.4	0.6			
LSD/sig	0.8	ns	P≤0.01			
PEDICEL LEN	GTH (mm)					
mean	3.2	2.2	2.3			
std deviation	0.4	0.2	0.4			
LSD/sig	0.4	P≤0.01	P≤0.01			
FLOWER CHA	RACTERISTIC	CS				
petal colour at d	ehiscence (RH					
	65A-B	65A-B	65B, 70B			
anther colour	dark red	dark ped	pale red			
	purple	purple	purple			
filament colour						
	pale red	white	pale red			
	purple		purple			

Hordeum vulgare Barley

'Lofty Nijo'

Application No: 2000/167 Accepted 14 Jun 2000. Applicant: **Sapporo Breweries Limited**, Gumma, Japan.

Agent: Luminis Pty Ltd, Adelaide, SA

Characteristics (Table 26, Figure 39) Plant: growth habit erect, semi-prostrate to semi-erect juvenile growth. Lowest leaves: hairiness of leaf sheaths absent. Flag leaf: anthocyanin colouration of auricles absent or very low, glaucosity of sheath medium. Time of ear emergence: early to medium. Awns: anthocyanin colouration of tips absent. Ear: glaucosity weak, attitude erect, number of rows two. shape parallel, density medium length short to medium. Rachis: length of first segment very short, curvature of first segment absent. Sterile spikelet: attitude (in mid to third ear) parallel to weakly divergent. Median spikelet: length of glume and its awn relative to the grain long. Grain: rachilla hair type long, anthocyanin colouration of lemma absent or very weak, husk present, colour white, size medium. Seasonal type: spring. Malt quality: extract high, diastatic power high, apparent attenuation limit very high, Hartong VZ 45 very high. Beta-amylase isoform: SD2H.

Origin and Breeding Controlled pollination: the original cross seed parent 'Kita A 66-1' by pollen parent 'Hokuiku 19' was made in Plant Bioengineering Research Laboratories (PBRL), Sapporo Breweries Ltd., Gumma, Japan in 1986. The seed parent is characterised by compact ear and the pollen parent is characterised by tall plant height. From this cross, a number of F₂ selections were made and single plant selection was made from F₃ to F₅ generations. In 1993, one selected line (86C76) was designated "SA93013" and sent to South Australia. SA93013 passed yield trials run by the Adelaide University-Sapporo Breweries Collaborative Breeding Trials to SARDI to enter Stage 3 yield trials. In 1998 it was named "SBWI-1" and was tested in the SARDI Stage 4 trials at 20 locations around SA. During the yield trials, malting quality of the line was evaluated in the Waite Barley Quality Evaluation Laboratory, Department of Plant Science, the Adelaide University and in the Cereal Chemistry Laboratory, PBRL, Sapporo Breweries. SBWI-1 showed

competitive yield to 'Schooner' in the statewide average. SBWI-1 was named as 'Lofty Nijo' in 2000 for commercial release. Selection criteria: yield in SA conditions, good malting performance. Propagation: by self-pollinated seed. Breeders: Mr. Kensuke Ogushi, Wataru Saito, Shoichi Arai, Kazuo Kibe, Shoei Miura, Takashi Asakura, Susumu Takahashi and Yoshiro Aida, PBRL, Sapporo Breweries Ltd., Gumma, Japan.

Choice of Comparators the following comparators were chosen on the basis of seasonal types – 'Franklin', 'Gairdner', 'Schooner' and 'Sloop', 'D. The parents were not included for reasons stated above.

Comparative Trial Location: Turretfield Research Centre, Rosedale, SA in 1999. Conditions: sown in June, 1999 in plots 8 rows by 5 metres, seeding rate was 60 kg/ha, corresponding to approximately 150 seeds per square metre. Hence, each replicate contains approximately 850 seeds. Trial design: randomised complete block. Measurements: qualitative traits (e.g. maturity) were measured on a whole plot basis whereas quantitative traits were measured on 10 plants per plot (ear length, awn length) or 100 plants per plot (uniformity of height).

Prior Applications and Sales Nil.

Description: Kensuke Ogushi, Sapporo Breweries Ltd., Gumma, Japan.

Table 26 Hordeum varieties

	'Lofty Nijo'	'Schooner'	'Sloop'	'Gairdner'	'Franklin'
 FLAG LEAF: ANTHO	CYANIN COLOUR	ATION OF AURIO	CLES		
	absent	absent	absent	very weak	absent
FLAG LEAF: GLAUC	OSITY OF SHEATI				
	medium	medium	weak	medium	absent or very weak
AWNS: ANTHOCYAN	NIN COLOURATIO	N OF TIPS			
	absent	absent	absent	absent	weak
EAR: ATTITUDE					
	erect	semi-erect	semi-erect	erect	erect
EAR: SHAPE					
	parallel	tapering	parallel	parallel	parallel
RACHIS: CURVATUR	E OF FIRST SEGM				
	absent	absent or very weak	absent or very weak	absent	absent
STERILE SPIKELET:	ATTITUDE				
	parallel to weakly divergent	parallel	parallel	divergent	parallel to weakly divergent
GRAIN: RACHILLA I	HAIR				
	long	short	short	short	long
GRAIN: ANTHOCYA	NIN COLOURATIC	N OF LEMMA			
	absent or	absent or	medium to	absent or	absent or
	very weak	very weak	strong	very weak	very weak
MATURITY CLASS					
	early	early-mid	early-mid	mid-late	late
BETA-AMYLASE ISC					
	SD2H	SD2L	SD1	SD1	SD1

Fig 1 Rose – flowers and plant parts of 'Tanarua'.

Fig 2 Rose – flowers and plant parts of 'Tanotika'.

Fig 3 Alstroemeria – flower of 'Komolight' syn Inca Moonlight.

Fig 4 Alstroemeria – flower of 'Kodelight' syn Inca Delight.

Fig 5 Agapanthus – inflorescences of 'Snow Cloud' (left) with comparator A .orientalis 'White Form' (right) showing difference in diameter, flower number and size.

Fig 6 Agapanthus – inflorescences of 'Regal Beauty' (left) with comparator A .orientalis 'Blue Form' (right) showing difference in diameter, colour and flower number.

Fig 7 Agapanthus – inflorescences of 'Glen Avon' (left), 'Blue Brush' (2nd from left) and 'Lavender Haze' (2nd from right) with comparator A.orientalis 'Blue Form' (right) showing difference in diameter, colour and flower number.

Fig 8 Abelia – 'Short & Sweet' (left) and *Abelia***Xgrandiflora 'compacta' (right) showing difference of growth habits and flower size.

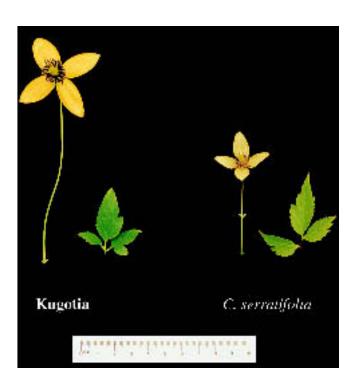


Fig 9 Clematis – flower and leaves of 'Kugotia' (left) with comparator *C. serratifolia* (right) showing differences in leaf serrations, tepal size and pedicel length.

Fig 10 Hydrangea – flower and inflorescence of 'Hobella'.

Fig 11 Hydrangea – flower and inflorescence of 'Homigo'.

Fig 12 Hydrangea – flower and inflorescence of 'Hopaline'.

Fig 13 Anthurium – older plant of 'Antinkeles' syn Pink Champion showing growth habit and flower colour and form at different growth stages.

Fig 14 Serruria – flowering plant of 'Carmen' (centre) with comparators 'Sugar N Spice' (left) and S. florida x S. rosea hybrid (right).



Fig 16 Waxflower – flowers of 'My Sweet Sixteen' (right) with comparators 'Snowflake' (left) and C. axillare (centre).

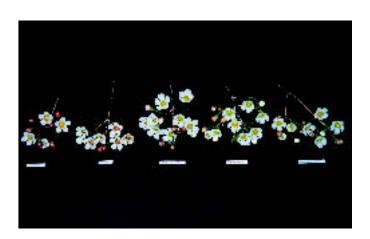


Fig 17 Waxflower – flowers of 'Denmark Pearl' (right), 'Albany Pearl' (2nd from right), 'Esperance Pearl' (centre) with comparators 'Madonna' (left) and 'Blondie' (2nd from left).

Fig 18 Waxflower – flowers of 'Jasper' (right) with comparator 'Eric John' (left).

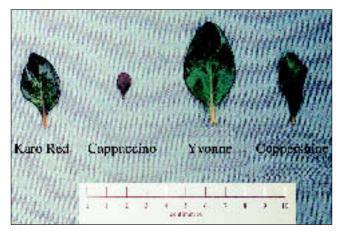


Fig 19 Coprosma – leaf of 'Cappuccino' (2nd from left) with comparators 'Karo Red' (left), 'Yvonne' (2nd from right) and 'Coppershine' (right).

Fig 20 Hebe – inflorescence and leaves of 'Southern Sunrise' (left) with comparators 'Wiri Joy' (centre) and 'Oratia Beauty' (right).

Fig 21 Sutera – 'Novasnow' (left) with comparator 'Blizzard' (right) showing differences in leaf width and flower diameter.

Fig 22 Cuphea – 'Lemon Squash' (left) with comparator 'Golden Ruby' (centre) and 'Shona' (right).

Fig 23 Bower Wattle – 'UY 3' (left), 'UY 2' (centre) and 'Green Mist' (right) illustrating habit, density, leaf dimension and colour differences. 'UY2' is the only one exhibiting presence of anthocyanin.

Fig 24 Lavender – 'Avice Hill' (left) with comparator 'Munstead' (right) showing differences in spike length.

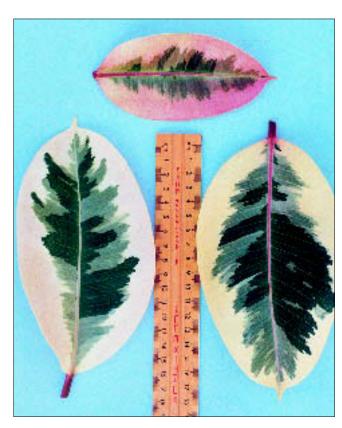


Fig 25 India Rubber Tree – leaves of 'Sylvie' showing details of leaf colour and pattern of variegation.

Fig 26 Grape – berries of 'BW41/5' (top) showing differences in length and width from comparators 'Italia' (centre) and 'Calmeria' (bottom)

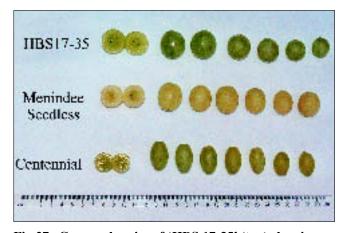


Fig 27 Grape – berries of 'HBS 17-35' (top) showing differences in width from comparators 'Menindee Seedless' (centre) and 'Centennial' (bottom)

Fig 28 Peach – fruits and leaves of 'Snowbrite'.

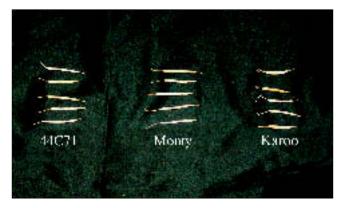


Fig 29 Canola – pods of '44C71' with comparators 'Monty' and 'Karoo' (from left to right).

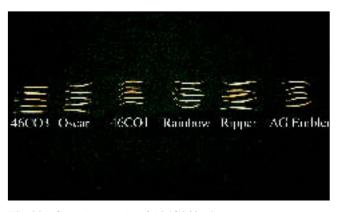


Fig 30 Canola – pods of '46C03' with comparators 'Oscar', '46C01', 'Rainbow', 'Ripper' and 'AG Emblem' (from left to right).

Fig 31 Canola – pods of 'AG Outback' (left) with comparators 'AG Emblem', 'Georgie', 'Mystic' and 'Monty' (from left to right).

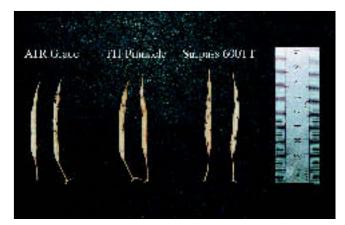


Fig 32 Canola – pods of 'ATR Grace' (left) with comparators 'TI1 Pinnacle' and 'Surpass 600TT' (from left to right).

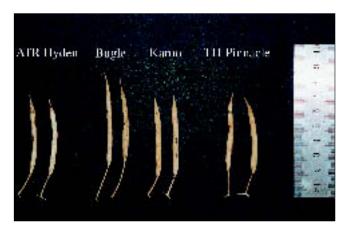


Fig 33 Canola – pods of 'ATR Hyden' (left) with comparators 'Bugle', 'Karoo' and 'TI1 Pinnacle' (from left to right).

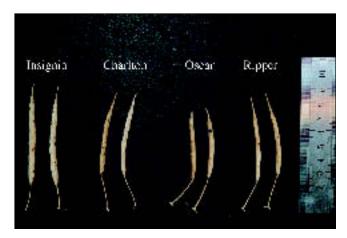


Fig 34 Canola – pods of 'Insignia' (left) with comparators 'Charlton', 'Oscar' and 'Ripper' (from left to right).

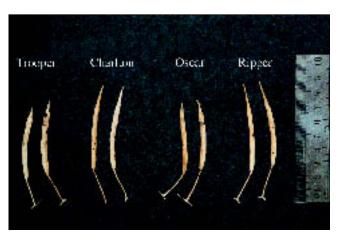


Fig 35 Canola – pods of 'Trooper' (left) with comparators 'Charlton', 'Oscar' and 'Ripper' (from left to right).

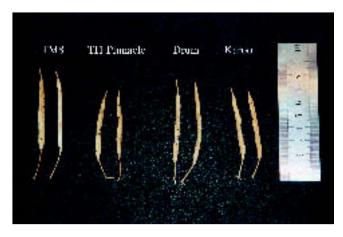


Fig 36 Canola – pods of 'TM8' (left) with comparators 'TI1 Pinnacle', 'Drum' and 'Karoo' (from left to right).

Fig 37 Canola – pod and flowers of 'Pac N164' (left) with comparators 'Karoo', 'Hylite 200TT' and 'Bugle' (from left to right).

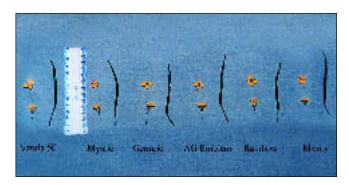


Fig 38 Canola – pod and flowers of 'Varola 50' (left) with comparators 'Mystic'(), 'Georgie', 'AG Emblem', 'Rainbow'() and 'Monty'() (from left to right).

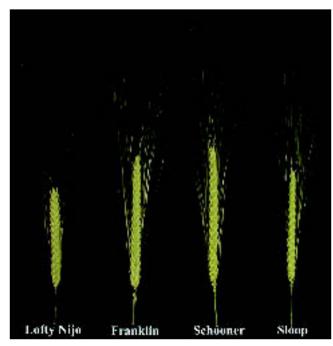


Fig 39 Barley – Ear of 'Lofty Nijo' (left) with comparators 'Franklin', 'Schooner' and 'Sloop' (from left to right).

Fig 41 Oats – panicles of 'Taipan' (left) and 'TAMO 397' (2nd from right) with comparators 'Enterprise', 'Warrego', 'Barcoo' and 'A.C. Assiniboia' syn Graza 68.

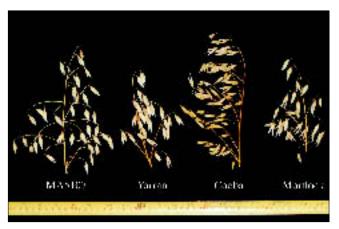


Fig 40 Oats – panicles of 'MA5107' (left) with comparators 'Yarran' (2nd from left), 'Cooba' (2nd from right) and 'Mortlock' (right).

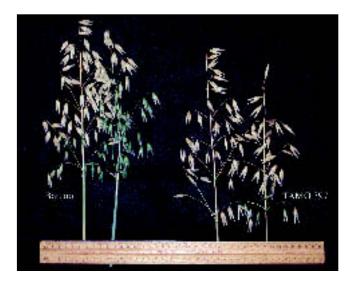


Fig 42 Oats – panicles of 'TAMO 397' (right) with comparator 'Barcoo' showing differences in the orientation of the branches of the panicle.

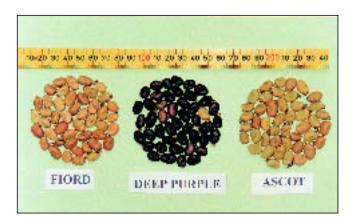


Fig 43 Field Bean - 'Deep Purple' (centre) showing distinct mid to dark violet testa colour to comparator 'Fiord' (left) beige and comparator 'Ascot VF' (right) green to beige.

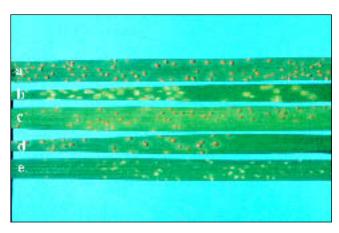


Fig 44 Wheat – seedling leaves of cultivars inoculated with *Puccinia triticina* (formerly *P. recondita tritici*) pathotype 104-1,2,3,(6),(7),11.

a. 'Morocco' (infection type 3+), b. Lr13 control (X-), c. 'Tatiara'(3+), d. 'Bowie'(3+), e. 'Anlace'(0;). Not shown 'Buckley' (3+).

Fig 46 Wheat – 'Mitre' (2 generations, centre) showing distinct mature height difference to comparator 'Janz' (right) and distinct time to maturity difference to comparator 'Beulah' (left).

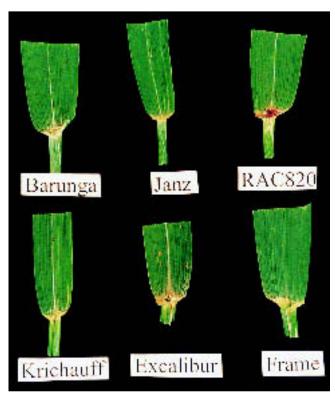


Fig 45 Wheat – auricles of 'Kukri' (shown as RAC820 top right) with the comparator varieties. A strong purple anthocyanin colouration is apparent in 'Kukri' while it is absent in comparator varieties.

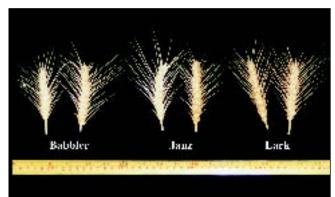


Fig 47 Wheat – ears of 'Babbler' (left) with comparators 'Janz' (centre) and 'Lark' (right).

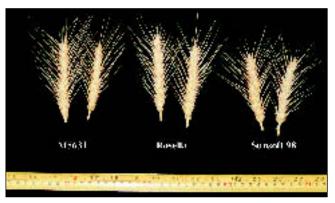


Fig 48 Wheat – ears of 'M5631' (left) with comparators 'Rosella' (centre) and 'Sunsoft 98' (right).

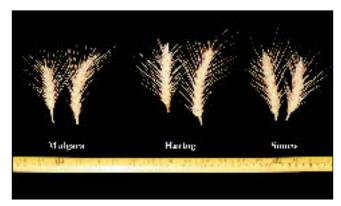


Fig 49 Wheat – ears of 'Mulgara' (left) with comparators 'Hartog' (centre) and 'Sunco' (right).

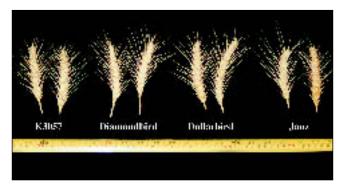


Fig 51 Wheat – ears of 'K3057' (left) with comparators 'Diamondbird' (2nd from left), 'Dollarbird' (2nd from right) and 'Janz' (right).

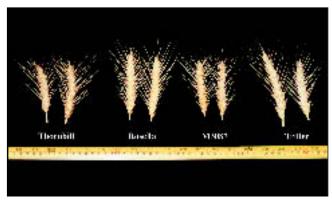


Fig 50 Wheat – ears of 'Thornbill' (left) with comparators 'Rosella' (2nd from left), 'M3087' (2nd from right) and 'Triller' (right).

Fig 52 Wheat – seedling leaves of 'Strzelecki' (left) and its comparators 'Batavia' (centre) 'Vicam' (right) and, showing differences in yellow spot infection.

Fig 53 Wheat – 'Clearfield WHT STL' (left) showing its distinct characteristic of tolerance to MIDAS® an imidazolinone based herbicide at four different rates compared to 'Stiletto' (centre) its seed parent and 'Spear' (right) part of its pollen parent. Rates of MIDAS® were 3 x rec. rate closest to front then nil; then rec. rate; then nil; then 75% rec. rate; then nil.

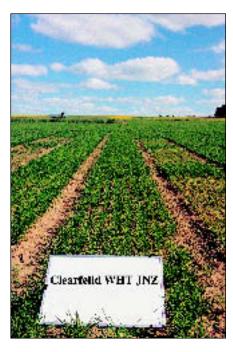


Fig 54 Wheat – 'Clearfield WHT JNZ' (left) showing its distinct characteristic of tolerance to MIDAS® an imidazolinone based herbicide at four different rates compared to 'Janz' its seed parent. Rates of MIDAS® were 3 x rec. rate closest to front then nil; then rec. rate; then nil; then 75% rec. rate; then nil.

Fig 55 Lovegrass – inflorescence of 'Elvera' (2 generations – left) with comparators Victorian ecotype (centre) and Parental Type (right).

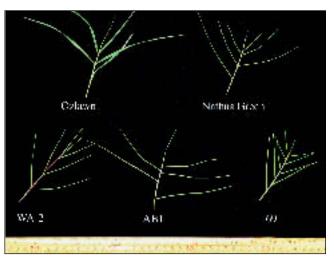


Fig 56 Sand Couch – 'Ozlawn' (top left) showing differences in leaf width from comparators 'Nathus Green' (top right), 'WA-2' (bottom left), AB1 (bottom centre) and '69' (bottom right).

Fig 57 Tall Fescue – plot showing fine-leaved nature of 'Prosper', surrounding plots are continental types.

Fig 58 Red Clover – comparative growth habit of 'Broadway' (centre right, second from front), 'Renegade' (centre foreground right), 'Redwest' (centre right 3rd from front), 'Grasslands Colenso' (centre foreground left), 'Grasslands Hamua' (centre left 2nd from front).

Hydrangea macrophylla Hydrangea

'Hobella'

Application No: 1995/254 Accepted: 8 Jan 1996.

Applicant: **JG Hofstede and WJG Hofstede**, Huissen, The Netherlands.

Agent: Plants Management Australia Pty Ltd, Wonga Park, VIC.

Characteristics (Table 27, Figure 10) Plant: growth habit upright, branching, medium height. Leaf: main blade colour green, variegation absent, blade shape elliptic to ovate, apex acute, base obtuse, lobbing absent, incisions medium. Inflorescence: diameter medium, flowers with small calyx conspicuous, flattened shape. Flower: Calyx diameter large, weak colouration (RHS 65A to D). Number of sepals 4 or 5, strong degree of overlapping of sepals, incisions of margins present and crenate on some sepals, sepal apex obtuse to retuse, time of flowering beginning early. (Note: all RHS colour chart numbers refer to 1995 edition.).

Origin and Breeding Controlled pollination: seed parent K731 x pollen parent W734. The seed parent is characterised by pale pink flowers. The parents are hybrids within the breeding program with no commercial significance. Hybridisation took place in Huissen, The Netherlands, 1987. Selection criteria: from this cross the seedling KW892 was selected on the bases of plant and flower habit, flower colour and general hardiness. Propagation: original propagation was via asexual means (cuttings) to develop stock plants. After a further 5 to 6 years of trials all original and subsequent generations were found to be uniform and stable. It will continue to be commercially propagated via cuttings. Breeder: JG Hofstede and WJG Hofstede, Huissen, The Netherlands.

Choice of Comparators 'Messaline' is the most similar variety of common knowledge, however 'Messaline' is characterised by finer leaf incisions and smaller calyx diameter. Sepals also vary in having a weaker degree of overlapping, an obtuse to acute apex and different flower colour (RHS 64C, 66C and D, 1995).

Comparative Trial The description is based on overseas data sourced from the RAAD VOOR HET KWEKERSRECHT, The Netherlands (Ref: NL 419). The comparative trial was conducted at Angers, France by CPVO following the UPOV technical guidelines for Hydrangeas, during the period between 1994 – 1995. Overseas data was further verified under Australian conditions at Park Orchards, VIC.

Prior Applications and Sales

Froi Applications and Sales						
Country	Year	Current Status	Name Applied			
The Netherlands	1993	Granted	'Hobella'			
Germany	1994	Surrendered	'Hobella'			
Denmark	1994	Withdrawn	'Hobella'			
UK	1994	Withdrawn	'Hobella'			
USA	1995	Granted	'Hobella'			
EU	1997	Granted	'Hobella'			
Japan	1998	Granted	'Hobella'			
New Zealand	1998	Applied	'Hobella'			

First sold in The Netherlands in March 1994.

Description: Steven Eggleton, Lilydale, VIC.

Table 27 Hydrangea varieties

	'Hobella'	*'Messaline'
LEAF CHARACTER	ISTICS	
incisions	medium	fine
FLOWER CHARACT	TERISTICS	
calyx diameter	large	medium
sepal overlapping	strong	medium
sepal apex	obtuse to retuse	obtuse to acute
sepal colour	RHS 65A to D	RHS 64C, 66C and D

'Homigo'

Application No: 1998/092 Accepted: 29 Jul 1998.

Applicant: **JG Hofstede and WJG Hofstede,** Huissen, The Netherlands.

Agent: Plants Management Australia Pty Ltd, Wonga Park, VIC.

Characteristics (Table 28, Figure 11) Plant: growth habit upright, branching, short to medium height. Leaf: main blade colour green, variegation absent, blade shape ovate, apex acuminate, base acute, lobing absent, incisions medium. Inflorescence: diameter medium to large, flowers with small calyx inconspicuous, globular shape. Flower: calyx diameter medium, medium colouration (RHS 68B to 65B,C and D). Number of sepals 4, medium to strong degree of overlapping of sepals, incisions of sepal margins present and crenate (mean depth 2mm), sepal apex acute, time of flowering beginning medium. (Note: all RHS colour chart numbers refer to 1995 edition.)

Origin and Breeding Controlled pollination: seed parent H747 x pollen parent K731. The seed parent is characterised by white flowers, the pollen parent by pink flowers. The parents are hybrids within the breeding program with no commercial significance. Hybridisation took place in Huissen, The Netherlands, 1990. Selection criteria: from this cross the seedling HK 901 was selected on the basis of plant and flower habit, flower colour and general hardiness. Propagation: original propagation was via asexual means (cuttings) to develop stock plants. After a further four years building numbers up to 100 plants, all subsequent generations were found to be uniform and stable. 'Homigo' will continue to be commercially propagated via cuttings. Breeder: JG Hofstede and WJG Hofstede, Huissen, The Netherlands.

Choice of Comparators 'Bodensee' and 'Hopaline' are the most similar varieties of common knowledge, however, 'Bodensee' is characterised by irregular sepal incisions and an obtuse sepal apex. 'Hopaline', which shares the same seed and pollen parents is characterised by an elliptic blade shape, different flower colour (RHS 62B,C and D, 1995), more deeply crenate sepal incisions (3.3mm mean) and a weaker degree of overlapping sepals.

Comparative Trial The description is based on overseas data sourced from the RAAD VOOR HET KWEKERSRECHT, The Netherlands (Ref: NL 571). The comparative trial was conducted at Angers, France by CPVO following the UPOV technical guidelines for Hydrangeas, during the period between 1995/96 – 1996/97.

Overseas data was further verified under Australian conditions at Park Orchards, VIC.

Prior Applications and Sales

Country	Year	Current Status	Name Applied
The Netherland	ls1995	Granted	'Homigo'
Japan	1996	Applied	'Homigo'
ΕŪ	1996	Granted	'Homigo'
Switzerland	1998	Granted	'Homigo'

First sold in Germany in Jan 1996.

Description: Steven Eggleton, Lilydale, VIC.

Table 28 Hydrangea varieties

	'Homigo'	*'Hopaline'	*'Bodensee'		
FLOWER CHA	RACTERIST	ICS			
speal apex	acute	obtuse	obtuse		
speal overlapping	ng				
	strong	medium	strong		
speal incisions	medium	deeply	irregularly		
	crenate	crenate	crenate		
NUMBER OF INCISIONS PER SEPAL					
(largest sepal or	n inflorescence	e)			
mean	11.4	9.1	2.6		
std deviation	1.8	1.5	2		
LSD/sig	2.1	P≤0.01	P≤0.01		
DEPTH OF INCISIONS (mm)					
mean	2	3.3	0.6		
std deviation	0.6	0.5	0.4		
		P≤0.01			

'Hopaline'

Application No: 1998/091 Accepted: 29 Jul 1998.

Applicant: **JG Hofstede and WJG Hofstede**, Huissen, The Netherlands.

Agent: **Plants Management Australia Pty Ltd,** Wonga Park, VIC.

Characteristics (Table 29, Figure 12) Plant: growth habit upright, branching, medium height. Leaf: main blade colour green, variegation absent, blade shape elliptic, apex acuminate, base acute, lobbing absent, incisions medium. Inflorescence: diameter medium, flowers with small calyx inconspicuous, globular shape. Flower: calyx diameter medium, weak colouration (RHS 62B, C and D). Number of sepals 4, medium degree of overlapping of sepals, incisions of sepal margins present and crenate (mean depth 3.3mm), sepal apex obtuse, time of flowering beginning medium. (Note: all RHS colour chart numbers refer to 1995 edition.)

Origin and Breeding Controlled pollination: seed parent H747 x pollen parent K731. The seed parent is characterised by white flowers, the pollen parent by pink flowers. The parents are hybrids within the breeding program with no commercial significance. Hybridisation took place in Huissen, The Netherlands, 1990. Selection criteria: from this cross the seedling HK 909 was selected on the basis of plant and flower habit, flower colour and general hardiness. Propagation: original propagation was via asexual means (cuttings) to develop stock plants. After

a further four years building numbers up to 100 plants, all subsequent generations were found to be uniform and stable. 'Hopaline' will continue to be commercially propagated via cuttings. Breeder: JG Hofstede and WJG Hofstede, Huissen, The Netherlands.

Choice of Comparators 'Homigo' and *H. macrophylla* are the most similar varieties/forms of common knowledge, however *H. macrophylla* is characterised by no sepal incisions and an acute sepal apex. 'Homigo', who shares the same seed and pollen parents, is characterized by a different flower colour (RHS 68B, 65B,C and D, 1995), less deeply crenate sepal incisions (2mm mean) and stronger overlapping of sepals.

Comparative Trial The description is based on overseas data sourced from the RAAD VOOR HET KWEKERSRECHT, The Netherlands (Ref: NL 619). The comparative trial was conducted at Angers, France by CPVO following the UPOV technical guidelines for Hydrangeas, during the period between 1997 – 1998. Overseas data was further verified under Australian conditions at Park Orchards, VIC.

Prior Applications and Sales

Country	Year	Current Status	Name Applied
The Netherlands	1996	Granted	'Hopaline'
Japan	1997	Applied	'Hopaline'
ΕÛ	1997	Granted	'Hopaline'
Switzerland	1999	Granted	'Hopaline'

First sold in Germany in Feb 1997.

Description: Steven Eggleton, Lilydale, VIC.

Table 29 Hydrangea varieties

	'Hopaline'	*'Homigo'	*H. macrophylla					
FLOWER CHA	FLOWER CHARACTERISTICS							
sepal incisions	deeply	medium	absent					
	crenate	crenate						
sepal apex	obtuse	acute	acute					
sepal overlappin	ng							
	medium	strong	strong					
NUMBER OF I	NCISIONS PE	ER SEPAL (larg	gest sepal on					
inflorescence)								
mean	9.1	11.4	absent					
std deviation	1.5	1.8	n/a					
LSD/sig	1.7	P≤0.01	n/a					
DEPTH OF INC	CISIONS							
mean	3.3	2	absent					
std deviation	0.5	0.6	n/a					
LSD/ sig	0.6	P≤0.01	n/a					

Lavandula angustifolia Lavender

'Avice Hill' syn Impression

Application No: 1998/110 Accepted: 15 Jun 1998.

Applicant: Lavenite Enterprises, Christchurch, New

Agent: Wyvee Horticultural Services, Lilydale, VIC.

Characteristics (Table 30, Figure 24). Plant: small to medium, shape bushy, colour of mature foliage medium green, habit upright to spreading, density dense. Leaf: shape linear, margin entire. Flowering Stem: branching above foliage weakly expressed, length short to medium (range 160-220mm), length of lowest lateral with spike short, thickness thin to medium (approx 2mm), intensity of green colour medium, rigidity medium. Spike: width medium (range 14-22mm), length medium to long (range 64-86mm), length from second whorl medium, shape cylindric, distance between whorls medium, number of whorls medium, ratio length/number of whorls medium, distance between first and second whorl medium to long, total number of flowers medium, number of flowers on terminal whorl medium, width of fertile bracts broad, colour of fertile bracts green, presence of bracteole when flowering sometimes present, length of bracteole short, infertile bracts absent. Flower: colour of calyx greenish, colour of corolla medium blue (at opening violet blue RHS 90BC, aged violet blue RHS 92A), calvx pubescence medium, time of beginning of flowering medium to late.

Origin and Breeding Open pollination followed by seedling selection: arose as the result of a single cycle of seedling selection from open pollinated plants of *Lavandula angustifolia* at applicant's property at Christchurch, New Zealand. Selection criteria: flower colour, timing and shape. Propagation: vegetative through at least 5 generations. Breeder: Virginia McNaughton, Christchurch, New Zealand.

Choice of Comparators 'Munstead' was chosen because it is the closest variety of common knowledge. The parental plants of *Lavandula angustifolia* were not considered because the candidate variety is smaller, more compact and has a darker flower colour compared to the parental plants.

Comparative Trial Description published herein is based on data sourced from New Zealand PVRO (LAV009, Grant No.1254). Location: comparative trial done in Canterbury, New Zealand using the variety 'Munstead' as comparator. The New Zealand data was confirmed by local observations and measurements.

Prior Applications and Sales.

Country Year Current Status Name Applied
New Zealand 1996 Granted 'Avice Hill'

First sold in New Zealand in 1997. First Australian sale in Jan 1998.

Description: Mark Lunghusen, Croydon, VIC.

Table 30 Lavandula varieties

	'Avice Hill'	*'Munstead'
SPIKE: LENGTH	medium to long	short to medium
FLOWER: COLOUR OF	COROLLA medium blue	dark blue
TIME OF BEGINNING	OF FLOWERING medium to late	medium

Leptospermum hybrid **Tea Tree**

'Daydream'

Application No: 1999/390 Accepted: 23 Dec 1999. Applicant: **Peter James Ollerenshaw,** Bywong, NSW.

Characteristics (Table 31, Figure 15) Plant habit: upright, short, medium, open perennial shrub. Branches: erect. Stem: fibrous, grey-purple (RHS 184B) when young. Leaf: size 11.54mm x 2.54mm, linear, flat, acute, yellow green (RHS 146B), glossiness very weak, hairs absent. Inflorescence: on spurs, solitary with occasional clusters. Buds: broader than long, pointed, pink, slightly hairy. Petals: size 8.90mm x 8.32mm, single, free, red-purple (RHS 61B), reflexing absent, undulation absent. Sepals: less than one-third size of petals, pink, rounded, hairs absent. Disk: diameter 8.38mm, yellow-green (RHS 146B). Stamens: greater than half the length of petals, filaments white. Fruit: woody, medium size. Flowering time: early to medium. (Note: all RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Controlled pollination: seed parent Leptospermum 'Cardwell' x pollen parent Leptospermum 'Rhiannon'. Seed from the controlled cross was germinated and the seedlings grown to maturity. The seed parent was an early flowering bushy shrub with erect branches and white flowers. The pollen parent was a late flowering upright plant with erect branches and red-purple (RHS 70A) flowers. The seedlings were evaluated for flower density, size and colour and the selected lines were propagated by cuttings. The final selection was made by evaluating clonal blocks. Hybridisation was carried out in 1995 at Bywong, NSW. The new variety is distinguished from the seed parent by the size and colour of flowers and from the pollen parent by flower colour and density. Propagation: vegetative. Breeder Peter James Ollerenshaw, Bywong, NSW.

Choice of Comparators The parental varieties were chosen as comparators because they are both varieties of common knowledge and each contributed identifiable characters of habit, flower colour and flower size to the variety. The sibling varieties 'White Wave', 'Outrageous', 'Pageant', and 'Love Affair' were also included in the trial.

Comparative Trial Location: The trial was carried out at Bywong Nursery, NSW, from Dec 1999 – Nov 2000. Conditions: trial conducted in a polyhouse, plants propagated from cutting, rooted cuttings planted into 200mm pots filed with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random. One sample per plant.

Prior Applications and Sales Nil.

Description: Robert L. Dunstone, Curtin, ACT.

'Love Affair'

Application No: 1999/391 Accepted: 23 Dec 1999. Applicant: **Peter James Ollerenshaw,** Bywong, NSW.

Characteristics (Table 31, Figure 15) Plant habit: bushy, short, narrow, medium density perennial shrub. Branches: erect. Stem: fibrous, greyed-red (RHS 178B) when young. Leaf: size 12.18mm x 2.77mm, linear, flat, acute, yellow green (RHS 152C), glossiness absent, hairs absent. Inflorescence: terminal on spurs, solitary. Buds: longer than broad, pointed, white, hairs absent. Petals: size 8.42mm x 8.51mm, single, free, red-purple (RHS 64B), reflexing absent, undulation absent. Sepals: one-third to two-thirds size of petals, white, rounded, hairs absent. Disk: diameter 7.97mm, yellow-green (RHS 144A). Stamens: greater than half the length of petals, filaments white. Fruit: woody, medium size. Flowering time: early. (Note: all RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Controlled pollination: seed parent Leptospermum 'Cardwell' x pollen parent Leptospermum 'Rhiannon'. Seed from the controlled cross was germinated and the seedlings grown to maturity. The seed parent was an early flowering bushy shrub with erect branches and white flowers. The pollen parent was a late flowering upright plant with erect branches and red-purple (RHS 70A) flowers. The seedlings were evaluated for flower density, size and colour and the selected lines were propagated by cuttings. The final selection was made by evaluating clonal blocks. Hybridisation was carried out in 1995 at Bywong, NSW, The new variety is distinguished from the seed parent by the size and colour of flowers and from the pollen parent by flower colour and density. Propagation: vegetative. Breeder Peter James Ollerenshaw, Bywong, NSW.

Choice of Comparators The parental varieties were chosen as comparators because they are both varieties of common knowledge and each contributed identifiable characters of habit, flower colour and flower size to the variety. The sibling varieties 'White Wave', 'Outrageous', 'Pageant', and 'Daydream' were also included in the trial.

Comparative Trial Location: The trial was carried out at Bywong Nursery, NSW, from Dec 1999 – Nov 2000. Conditions: trial conducted in a polyhouse, plants propagated from cutting, rooted cuttings planted into 200mm pots filed with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random. One sample per plant.

Prior Applications and Sales

First sold in Australia in Jan 2001.

Description: Robert L. Dunstone, Curtin, ACT.

'Outrageous'

Application No: 1999/389 Accepted: 23 Dec 1999. Applicant: **Peter James Ollerenshaw,** Bywong, NSW.

Characteristics (Table 31, Figure 15) Plant habit: upright, medium height, narrow, open perennial shrub. Branches: erect. Stem: fibrous, grey-purple (RHS 184B) when young. Leaf: size 11.93mm x 2.58mm, linear, flat, acute, yellow green (RHS 146C), glossiness absent, hairs absent. Inflorescence: on spurs, solitary with occasional clusters. Buds: longer than broad, pointed, pink, slightly hairy. Petals: size 9.27mm x 9.63mm, single, free, red-purple (RHS 60A), reflexing absent, undulation present. Sepals: less than one-third size of petals, pink, pointed, hairs absent or slightly hairy. Disk: diameter 8.97mm yellow-green (RHS 146B). Stamens: greater than half the length of petals, filaments white. Fruit: woody, medium size. Flowering time: medium. (Note: all RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Controlled pollination: seed parent Leptospermum 'Cardwell' x pollen parent Leptospermum 'Rhiannon'. Seed from the controlled cross was germinated and the seedlings grown to maturity. The seed parent was an early flowering bushy shrub with erect branches and white flowers. The pollen parent was a late flowering upright plant with erect branches and red-purple (RHS 70A) flowers. The seedlings were evaluated for flower density, size and colour and the selected lines were propagated by cuttings. The final selection was made by evaluating clonal blocks. Hybridisation was carried out in 1995 at Bywong, NSW, The new variety is distinguished from the seed parent by the size and colour of flowers and from the pollen parent by flower colour and density. Propagation: vegetative. Breeder Peter James Ollerenshaw, Bywong, NSW.

Choice of Comparators The parental varieties were chosen as comparators because they are both varieties of common knowledge and each contributed identifiable characters of habit, flower colour and flower size to the variety. The sibling varieties 'White Wave', 'Love Affair', 'Pageant', and 'Daydream' were also included in the trial.

Comparative Trial Location: The trial was carried out at Bywong Nursery, NSW, from Dec 1999 – Nov 2000. Conditions: trial conducted in a polyhouse, plants propagated from cutting, rooted cuttings planted into 200mm pots filed with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random. One sample per plant.

Prior Applications and Sales Nil.

Description: Robert L. Dunstone, Curtin, ACT.

'Pageant'

Application No: 1999/392 Accepted: 23 Dec 1999. Applicant: **Peter James Ollerenshaw,** Bywong, NSW.

Characteristics (Table 31, Figure 15) Plant habit: bushy, short, narrow, dense perennial shrub. Branches: arching. Stem: fibrous, greyed-red (RHS 178B) when young. Leaf: size 13.42mm x 2.76mm, linear, flat, acute, yellow green (RHS 146C), glossiness absent, hairs absent. Inflorescence: on spurs, occasional clusters. Buds: broader than long, pointed, pink, slightly hairy. Petals: size 9.10mm x 8.28mm, single, free, purple (RHS 78A), reflexing absent, occasional undulation. Sepals: less than one-third size of petals, white, pointed, slightly hairy. Disk: diameter 8.16mm yellowgreen (RHS 146C). Stamens: up to half the length of petals, filaments white. Fruit: woody, medium size. Flowering time: medium. (Note: all RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Controlled pollination: seed parent Leptospermum 'Cardwell' x pollen parent Leptospermum 'Rhiannon' (b. Seed from the controlled cross was germinated and the seedlings grown to maturity. The seed parent was an early flowering bushy shrub with erect branches and white flowers. The pollen parent was a late flowering upright plant with erect branches and red-purple (RHS 70A) flowers. The seedlings were evaluated for flower density, size and colour and the selected lines were propagated by cuttings. The final selection was made by evaluating clonal blocks. Hybridisation was carried out in 1995 at Bywong, NSW. The new variety is distinguished from the seed parent by the size and colour of flowers and from the pollen parent by flower colour and density. Propagation: vegetative. Breeder Peter James Ollerenshaw, Bywong, NSW.

Choice of Comparators The parental varieties were chosen as comparators because they are both varieties of common knowledge and each contributed identifiable characters of habit, flower colour and flower size to the variety. The sibling varieties 'White Wave', 'Outrageous', 'Day Dream', and 'Love Affair' were also included in the trial.

Comparative Trial Location: The trial was carried out at Bywong Nursery, NSW, from Dec 1999 – Nov 2000. Conditions: trial conducted in a polyhouse, plants propagated from cutting, rooted cuttings planted into 200mm pots filed with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random. One sample per plant.

Prior Applications and Sales Nil.

Description: Robert L. Dunstone, Curtin, ACT.

'White Wave'

Application No: 1999/388 Accepted: 23 Dec 1999. Applicant: **Peter James Ollerenshaw,** Bywong, NSW.

Characteristics (Table 31, Figure 15) Plant habit: spreading, very short, dense perennial shrub. Branches: horizontal. Stem: fibrous, grey-purple (RHS 184C) when young. Leaf: size 11.40mm x 2.58mm, linear, flat, acute, yellow green (RHS 144A, aging to RHS 146A), glossiness very weak, hairs absent. Inflorescence: on spurs, solitary. Buds: longer than broad, pointed, green/pink, hairs present. Petals: size 8.76 x 8.42mm, single, free, white, reflexing absent, undulation present. Sepals: one third to two thirds size of petals, pink, rounded, hairs absent or slightly hairy. Disk: diameter 7.76 mm yellow-green (RHS 146A). Stamens: less than half the length of petals, filaments white. Fruit: woody, medium size. Flowering time: medium. (Note: all RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Controlled pollination: seed parent Leptospermum 'Cardwell' x pollen parent Leptospermum 'Rhiannon'. Seed from the controlled cross was germinated and the seedlings grown to maturity. The seed parent was an early flowering bushy shrub with erect branches and white flowers. The pollen parent was a late flowering upright plant with erect branches and red-purple (RHS 70A) flowers. The seedlings were evaluated for flower density, size and colour and the selected lines were propagated by cuttings. The final selection was made by evaluating clonal blocks. Hybridisation was carried out in 1995 at Bywong, NSW, The new variety is distinguished from the seed parent by the size and colour of flowers and from the pollen parent by flower colour and density. Propagation: vegetative. Breeder Peter James Ollerenshaw, Bywong, NSW.

Choice of Comparators The parental varieties were chosen as comparators because they are both varieties of common knowledge and each contributed identifiable characters of habit, flower colour and flower size to the variety. The sibling varieties 'Love Affair', 'Outrageous', 'Pageant', and 'Daydream' were also included in the trial.

Comparative Trial Location: The trial was carried out at Bywong Nursery, NSW, from Dec 1999 – Nov 2000. Conditions: trial conducted in a polyhouse, plants propagated from cutting, rooted cuttings planted into 200mm pots filed with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, pest and disease treatments applied as required. Trial design: ten pots of each variety arranged in a completely randomised design. Measurements: from ten plants at random. One sample per plant.

Prior Applications and Sales

First sold in Australia in Dec 1999.

Description: Robert L. Dunstone, Curtin, ACT.

Table 31 Leptospermum varieties

	'Pageant'	'Love Affair'	'Daydream'	'Outrageous'	'White Wave'	*'Cardwell'	*'Rhiannon'
PLANT: HABIT	bushy	bushy	upright	upright	spreading	bushy	upright
PLANT: ATTITUDE	OF BRANCHE	S					
	arching	erect	erect	erect	horizontal	erect	erect
PLANT: DENSITY	dense	medium	medium	open	dense	open	open
YOUNG STEM: COI							
	greyed-red 178B	greyed-red 178B	greyed-purple 184B	greyed-purple 184B	greyed-purple 184C	greyed-orange 164B	greyed-purple 184A
LEAF: LENGTH (mr		= 1.65)	1				1
mean	13.42 ^{bc}	12.18 ^{bc}	11.54 ^b	11.93 ^{bc}	11.4 ^b	8.46 ^a	12.0 ^{bc}
std deviation	1.55	1.4	1.06	1.35	1.61	0.42	1.31
LEAF: WIDTH (mm)		: 0.19)	·	,			
mean	2.76 ^b	2.77 ^b	2.54 ^b	2.58 ^b	2.58 ^b	1.30 ^a	5.96 ^c
std deviation	0.26	0.13	0.47	0.25	0.49	0.22	0.80
LEAF: SHAPE	linear	linear	linear	linear	linear	linear	lanceolate
LEAF: PROFILE IN	CROSS SECTION	ON					
	flat	flat	flat	flat	flat	flat	incurved
LEAF: MAIN COLO	IIB UE HIDDED	SIDE (EXCLU	DING HAIRIN	FSS)			
LLIII . WAIII COLO	yellow-green		yellow-green		yellow-green	yellow-green	yellow-green
	146C	152C	146B	146C	144A	153A	146C
INFLORESCENCE: A	ARRANGEMEN	NT OF FLOWE	RS				
IVI EORESCEIVEE.	solitary,	solitary	solitary,	solitary,	solitary	solitary	solitary
	occ. clusters		occ. clusters	occ. clusters	,		, , , , , , , , , , , , , , , , , , , ,
BUD: RATIO LENG	 ΓΗ/WIDTH						
	broader	longer	broader	longer	longer	broader	longer
	than long	than broad	than long	than broad	than broad	than long	than broad
BUD: PREDOMINA	NT COLOUR						
	red purple	white	pink	pink	green/pink	pale pink	white
BUD: HAIRINESS	slightly hairy	absent	slightly hairy	slightly hairy	hairy	absent	strongly hairy
FLOWER SIZE	large	medium	large	large	medium	small	large
SEPAL: LENGTH IN	RELATION TO) LENGTH OF	PETAI				
SELLE. DENOTH IN	less than 1/3	1/3 to 2/3	less than 1/3	less than 1/3	1/3 to 2/3	less than 1/3	1/3 to 2/3
SEPAL: PREDOMIN	ANT COLOUR						
	white	white	pink	pink	pink	white	white
SEPAL: SHAPE OF T	TID						
SLIAL. SHAPE UF	pointed	rounded	rounded	pointed	rounded	rounded	pointed
SEPAL: HAIRINESS	slightly hairy	absent	very weak	weakly hairy	weakly hairy	absent	strongly hairy
			, or , mount	y			
PETAL: MAIN COLO			, ,	, ,	1.4	1.4	1 1
	purple	red-purple	red-purple	red-purple	white	white	red-purple
	78A	64B	61B	60A			70A
		TED					
PETAL: MAIN COLO	OUR WHEN AC						
PETAL: MAIN COLO	OUR WHEN AC purple 78A	red-purple 64B	red-purple 61B	red-purple 60A	white	white	red-purple 70A

absent	absent					
	ausem	absent	absent	absent	absent	present
ON OF MARGI	N					
occasional	absent	absent	present	present	present	absent
nm) (LSD P≤0.0	01 = 0.56)					
8.16 ^b	7.97 ^b	8.38 ^b	8.97 ^{bc}	7.76 ^b	5.08 ^a	9.29 ^c
0.90	0.50	0.50	0.88	0.61	0.30	0.80
FIRST OPENIN	G					
yellow green 146C	yellow green 144A	yellow-green 146B	yellow-green 146B	yellow-green 146A	yellow-green 144A	yellow-green 146B
EN AGED						
yellow green 146C	yellow green 144A	yellow-green 146C	yellow-green 146B	yellow-green 146A	yellow-green 144A	yellow-green 146B
RELATIVE TO	O LENGTH OF	PETALS				
to half as long	>half <equal< td=""><td>>half<equal< td=""><td>>half<equal< td=""><td><half< td=""><td>>half<equal< td=""><td>>half<equal< td=""></equal<></td></equal<></td></half<></td></equal<></td></equal<></td></equal<>	>half <equal< td=""><td>>half<equal< td=""><td><half< td=""><td>>half<equal< td=""><td>>half<equal< td=""></equal<></td></equal<></td></half<></td></equal<></td></equal<>	>half <equal< td=""><td><half< td=""><td>>half<equal< td=""><td>>half<equal< td=""></equal<></td></equal<></td></half<></td></equal<>	<half< td=""><td>>half<equal< td=""><td>>half<equal< td=""></equal<></td></equal<></td></half<>	>half <equal< td=""><td>>half<equal< td=""></equal<></td></equal<>	>half <equal< td=""></equal<>
G OF FLOWE	RING					
medium	early	medium	medium	medium	early	late
- I	occasional nm) (LSD P≤0.0 8.16 ^b 0.90 FIRST OPENIN yellow green 146C EN AGED yellow green 146C I RELATIVE To to half as long	nm) (LSD P≤0.01 = 0.56) 8.16 ^b 7.97 ^b 0.90 0.50 FIRST OPENING yellow green yellow green 146C 144A EN AGED yellow green yellow green 146C 144A I RELATIVE TO LENGTH OF to half as long >half <equal< td=""><td>occasional absent absent nm) (LSD P≤0.01 = 0.56) 8.16^b 7.97^b 8.38^b 0.90 0.50 0.50 FIRST OPENING yellow green yellow green 146C 144A 146B EN AGED yellow green yellow green yellow-green 146C 144A 146C I RELATIVE TO LENGTH OF PETALS to half as long >half<equal< td=""><td>occasional absent absent present Description Carroll of the present </td><td>occasional absent absent present present nm) (LSD P≤0.01 = 0.56) 8.16^b 7.97^b 8.38^b 8.97^{bc} 7.76^b 0.90 0.50 0.50 0.88 0.61 FIRST OPENING yellow green yellow green 146C 144A 146B 146B 146A EN AGED yellow green yellow green yellow-green yellow-green 146C 144A 146C 146B 146A I RELATIVE TO LENGTH OF PETALS to half as long >half<equal>half<equal>half<equal 146a<="" <hear="" of="" present="" td="" the="" yellow-green=""><td>occasional absent absent present present present present nm) (LSD $P \le 0.01 = 0.56$) 8.16b 7.97b 8.38b 8.97bc 7.76b 5.08a 0.90 0.50 0.50 0.88 0.61 0.30 FIRST OPENING yellow green yellow green 146C 144A 146B 146B 146A 144A EN AGED yellow green yellow green yellow-green yellow-green 146C 144A 146C 146B 146A 144A I RELATIVE TO LENGTH OF PETALS to half as long >half<equal>half<equal>half<equal <h="" style="text-align: right;">half<equal <h="" sty<="" td=""></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></td></equal></equal></equal></td></equal<></td></equal<>	occasional absent absent nm) (LSD P≤0.01 = 0.56) 8.16 ^b 7.97 ^b 8.38 ^b 0.90 0.50 0.50 FIRST OPENING yellow green yellow green 146C 144A 146B EN AGED yellow green yellow green yellow-green 146C 144A 146C I RELATIVE TO LENGTH OF PETALS to half as long >half <equal< td=""><td>occasional absent absent present Description Carroll of the present </td><td>occasional absent absent present present nm) (LSD P≤0.01 = 0.56) 8.16^b 7.97^b 8.38^b 8.97^{bc} 7.76^b 0.90 0.50 0.50 0.88 0.61 FIRST OPENING yellow green yellow green 146C 144A 146B 146B 146A EN AGED yellow green yellow green yellow-green yellow-green 146C 144A 146C 146B 146A I RELATIVE TO LENGTH OF PETALS to half as long >half<equal>half<equal>half<equal 146a<="" <hear="" of="" present="" td="" the="" yellow-green=""><td>occasional absent absent present present present present nm) (LSD $P \le 0.01 = 0.56$) 8.16b 7.97b 8.38b 8.97bc 7.76b 5.08a 0.90 0.50 0.50 0.88 0.61 0.30 FIRST OPENING yellow green yellow green 146C 144A 146B 146B 146A 144A EN AGED yellow green yellow green yellow-green yellow-green 146C 144A 146C 146B 146A 144A I RELATIVE TO LENGTH OF PETALS to half as long >half<equal>half<equal>half<equal <h="" style="text-align: right;">half<equal <h="" sty<="" td=""></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></td></equal></equal></equal></td></equal<>	occasional absent absent present Description Carroll of the present	occasional absent absent present present nm) (LSD P≤0.01 = 0.56) 8.16 ^b 7.97 ^b 8.38 ^b 8.97 ^{bc} 7.76 ^b 0.90 0.50 0.50 0.88 0.61 FIRST OPENING yellow green yellow green 146C 144A 146B 146B 146A EN AGED yellow green yellow green yellow-green yellow-green 146C 144A 146C 146B 146A I RELATIVE TO LENGTH OF PETALS to half as long >half <equal>half<equal>half<equal 146a<="" <hear="" of="" present="" td="" the="" yellow-green=""><td>occasional absent absent present present present present nm) (LSD $P \le 0.01 = 0.56$) 8.16b 7.97b 8.38b 8.97bc 7.76b 5.08a 0.90 0.50 0.50 0.88 0.61 0.30 FIRST OPENING yellow green yellow green 146C 144A 146B 146B 146A 144A EN AGED yellow green yellow green yellow-green yellow-green 146C 144A 146C 146B 146A 144A I RELATIVE TO LENGTH OF PETALS to half as long >half<equal>half<equal>half<equal <h="" style="text-align: right;">half<equal <h="" sty<="" td=""></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></td></equal></equal></equal>	occasional absent absent present present present present nm) (LSD $P \le 0.01 = 0.56$) 8.16b 7.97b 8.38b 8.97bc 7.76b 5.08a 0.90 0.50 0.50 0.88 0.61 0.30 FIRST OPENING yellow green yellow green 146C 144A 146B 146B 146A 144A EN AGED yellow green yellow green yellow-green yellow-green 146C 144A 146C 146B 146A 144A I RELATIVE TO LENGTH OF PETALS to half as long >half <equal>half<equal>half<equal <h="" style="text-align: right;">half<equal <h="" sty<="" td=""></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal></equal>

Mean values followed by the same letters are not significantly different at P≤0.01 according to Duncan's Multiple Range Test.

Lolium multiflorum Italian Ryegrass

'Crusader'

Application No: 1999/323 Accepted: 19 Jul 2000. Applicant: **Pyne Gould Guinness,** East Doncaster,VIC.

Characteristics (Table 32) Ploidy: diploid. Plant: habit upright, maturity late, height of fertile tillers at maturity short (mean 97.91cm – pulled). Flag leaf: length long (mean 283.71mm), width wide (mean 11.66mm). Inflorescence: spike length short (mean 302.37mm), spikelet length medium (18.67mm), density medium, late heading (4th Nov).

Origin and Breeding Polycross: New Zealand varieties 'Concord' and 'Corvette' were grown at Ceres Farm, Christchurch, New Zealand along with European variety 'Exalto'. Individual plants were selected for productivity, persistence, disease resistance, uniformity, drought tolerance and seed yield and then polycrossed in isolation. Selection criteria: mass selection was made from these crosses, to combine fast establishment with productivity and persistence. Propagation: by seed. Breeder: Dr. Alan Stewart, Christchurch, New Zealand.

Choice of Comparators 'Dargle', 'Eclipse', 'Noble', 'Dargo', 'Flanker', 'Surrey', 'Progrow', and 'Corvette' were chosen as the diploid varieties of common knowledge with the most similar heading dates. 'Corvette' is one of the original parental varieties. The other parental variety 'Concord' was excluded because it has a narrower flag leaf and 'Exalto' was excluded because it has a earlier heading date.

Comparative Trial Location: Whittlesea, VIC, spring-summer, 1999. Conditions: planted as spaced plants in open beds, managed for even and uniform growth. Trial design: 60 plants of each variety arranged in randomised complete blocks with 6 replicates. Measurement: from all trial plants.

Prior Applications and Sales No prior applications. First sold in New Zealand in Feb 1998, first Australian sale in Mar 1999.

Description: Ian Aberdeen, Aberdeen Consulting Pty Ltd, Kilmore, VIC.

Table 32 Lolium varieties

	'Crusader'	*'Dargle'	*'Eclipse'	*'Noble'	*'Dargo'	*'Flanker'	*'Surrey'	*'Progrow'	*'Corvette'
FLAG LEAF LI	ENGTH (mm)	 							
mean	283.71	263.79	260.89	256.69	228.97	273.44	247.50	270.30	269.55
std deviation	51.09	41.72	51.41	41.62	54.09	64.37	55.76	66.13	56.64
LSD/sig	23.86	ns	ns	ns	P≤0.01	ns	P≤0.01	ns	ns
FLAG LEAF W	TDTH (mm)								
mean	11.66	11.05	10.72	10.71	9.61	9.94	10.97	11.00	10.32
std deviation	1.80	1.42	1.79	1.47	1.61	1.26	1.73	1.78	1.51
LSD/sig	0.71	ns	P≤0.01	P≤0.01	P≤0.01	P≤0.01	ns	ns	P≤0.01
PULLED STEM	1 LENGTH (c	em)							
mean	97.91	106.45	95.98	105.28	107.77	103.72	103.48	101.60	103.03
std deviation	12.05	11.36	17.19	13.56	16.66	11.01	15.03	14.60	12.36
LSD/sig	6.01	P≤0.01	ns	ns	P≤0.01	ns	ns	ns	ns
DAYS TO HEA	DING (from 3	30/09/99)							
mean	64.81	53.51	57.36	51.84	34.47	50.05	38.98	48.83	47.99
std deviation	8.51	9.78	7.54	9.92	8.04	10.59	10.79	9.14	8.84
LSD/sig	4.02	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01
SPIKELET DE	NSITY (per 10	00mm)							
mean	14.36	13.91	12.61	15.70	12.72	12.37	12.20	12.49	12.88
std deviation	3.24	3.12	2.74	3.55	3.30	2.59	2.80	2.71	2.86
LSD/sig	1.33	ns	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01	ns

Lolium perenne Perennial Ryegrass

'Arena 1'

Application No: 1999/188, Accepted: 3 Aug 1999. Applicant: **Pyne Gould Guinness Ltd,** Christchurch, NZ. Agent: **Ian Aberdeen,** Kilmore, VIC.

Characteristics (Table 33) Ploidy: diploid. Plant: habit turfgrass, maturity medium, height of fertile tillers at maturity medium (mean 734mm – pulled). Flag leaf: length medium (mean 166mm), width: medium (mean 4.1mm). Inflorescence: spike length medium (mean 225mm), spikelet length medium (12.2mm), density medium, medium heading (13th Nov).

Origin and Breeding Controlled pollination: seed parent 'Endurance' and pollen parent 'Nine-O-One' in 1992. F_1 plants were inter-pollinated and selected F_2 plants were polycrossed to form 'Arena 1'. Selection criteria: a series of reselections for fine dark leaves to suit a turf variety. Propagation: by seed. Breeder: Dr. Alan Stewart, Christchurch, New Zealand.

Choice of Comparators 'Checkmate', 'SR4100', 'SR4200', 'Edge', 'Cutter', 'Calypso' and 'Greenland' were chosen as the turf ryegrass varieties of common knowledge with the most similar heading dates. The seed parent 'Endurance' was not included because it heads 23 days earlier, and the pollen parent 'Nine-O-One' was excluded as comparator because it was already known to be significantly different in flag leaf length and width, in spike length, in spikelet number and in stem length.

Comparative Trial Location: Whittlesea, VIC, spring-summer, 1999. Conditions: planted as spaced plants in open

beds, managed for even and uniform growth. Trial design: 60 plants of each variety arranged in randomised complete blocks with 6 replicates. Measurement: from all trial plants.

Prior Applications and Sales No prior applications.

First sold in New Zealand in Feb1999, first Australian sale in Apr 1999.

Description: Ian Aberdeen, Aberdeen Consulting Pty Ltd., Kilmore, VIC.

'Checkmate'

Application No: 1999/187 Accepted: 3 Aug 1999. Applicant: **Pyne Gould Guinness Ltd,** Christchurch, NZ. Agent: **Ian Aberdeen,** Kilmore, VIC.

Characteristics (Table 33) Ploidy: diploid. Plant: habit turfgrass, maturity medium, height of fertile tillers at maturity medium (mean 718mm – pulled). Flag leaf: length long (mean 174 mm), width medium (mean 3.9mm). Inflorescence: spike length medium (mean 214mm), spikelet length long (13.7mm), density low, medium heading (13th Nov).

Origin and Breeding Polycross: surviving turf ryegrasses from an old turf in Barcelona, Spain were polycrossed at Ceres Farm, Christchurch, New Zealand. Selection criteria: further selection was made fine leaf, dark colour and crown rust resistance. Propagation: by seed. Breeder: Dr. Alan Stewart, Christchurch, New Zealand.

Choice of Comparators 'Arena 1', 'SR4100', 'SR4200', 'Edge', 'Cutter', 'Calypso' and 'Greenland' were chosen as the turf ryegrass varieties of common knowledge with the most similar heading dates. The original parental type was not included because of high susceptibility to crown rust.

Comparative Trial Location: Whittlesea, VIC, spring-summer, 1999. Conditions: planted as spaced plants in open beds, managed for even and uniform growth. Trial design: 60 plants of each variety arranged in randomised complete blocks with 6 replicates. Measurement: from all trial plants.

Prior Applications and Sales No prior applications. First sold in New Zealand in May 1999.

Description: Ian Aberdeen, Aberdeen Consulting Pty Ltd., Kilmore, VIC.

Table 33 Lolium varieties

	'Arena 1'	'Checkmat	te' *'SR4100'	*'SR4200'	*'Edge'	*'Cutter'	*'Calypso'	*'Greenland'	
FLAG LEAF LENGTH (mm) (LSD at P≤0.01 = 15.38)									
mean	165.81 ^b	174.25 ^b	171.22 ^b	162.49 ^b	173.07 ^b	160.31 ^b	158.22 ^b	140.39 ^a	
std deviation	42.72	35.21	36.30	32.99	35.62	31.67	35.96	36.44	
FLAG LEAF WIDT			.35)						
mean	4.11 ^d	3.90 ^{cd}	3.59bc	3.58 ^{bc}	4.54 ^e	3.29 ^{ab}	3.63 ^{bc}	3.16 ^a	
std deviation	0.78	0.72	0.89	0.83	1.10	0.72	0.66	0.80	
PULLED STEM LE	ENGTH (cm) (I	SD at P≤0.01	1 = 46.64)						
mean	734.07 ^b	717.79 ^b	786.00 ^c	650.72 ^a	729.94 ^b	724.36 ^b	663.63 ^a	630.71 ^a	
std deviation	110.50	101.53	90.96	104.82	125.55	98.26	167.73	84.17	
SPIKE LENGTH (n	nm) (LSD at Ps	(0.01 = 14.89))						
mean	225.43 ^c	214.47 ^{bc}	224.30 ^c	199.34 ^b	223.80 ^c	216.63 ^{bc}	200.83 ^b	176.78 ^a	
std deviation	38.09	33.85	37.40	32.78	30.66	35.32	37.39	31.33	
SPIKELET LENGT		at $P \le 0.01 = 0$.94)						
mean	12.16 ^{ab}	13.69 ^c	11.69 ^{ab}	11.81 ^{ab}	12.90 ^{bc}	12.21 ^{ab}	12.54 ^b	11.04 ^a	
std deviation	2.26	2.58	2.08	2.03	2.47	1.79	2.49	1.58	

Note: mean values followed by the same letter are not significantly different according to Duncan's Multiple Range Test at P≤0.01.

'Ceres Kingston'

Application No: 1999/322 Accepted: 21 Jul 1997. Applicant: **Pyne Gould Guinness,** East Doncaster,VIC.

Characteristics (Table 34) Ploidy: diploid. Plant: habit upright, maturity early, height of fertile tillers at maturity medium (mean 79cm – pulled). Flag leaf: length short (mean 196mm), width narrow (mean 4mm). Inflorescence: spike length short (mean 302.37mm), spikelet length short (235mm), density medium, early heading (24th Oct). Other: tolerates aluminium in acid soils.

Origin and Breeding Polycross: 'Yatsyn' (b), 'Marathon' and a persistent Spanish line were placed in isolated polycross block in Christchurch, New Zealand. Selection criteria: from this polycross, progeny plants were selected for productivity, persistence, disease resistance, uniformity, tiller density, drought tolerance and seed yield. Propagation: by seed. Breeder: Dr. Alan Stewart, Christchurch, New Zealand.

Choice of Comparators 'Yatsyn' (b, 'Samson', 'Nui', and 'Bronsyn' (b) were chosen as the diploid varieties of common knowledge with the most similar heading dates. 'Yatsyn' (b) is one of the original parental varieties. The other parental variety 'Marathon' was excluded because it has a later heading date. The Spanish line was excluded because it has an earlier heading date.

Comparative Trial Location: Whittlesea, VIC, springsummer, 1999. Conditions: planted as spaced plants in open beds, managed for even and uniform growth. Trial design: 60 plants of each variety arranged in randomised complete blocks with 6 replicates. Measurement: from all trial plants.

Prior Applications and SalesCountryYearCurrent StatusName AppliedArgentina1999Granted'Kingston'

First sold in New Zealand in Mar 1998, first Australian sale in Apr 1999.

Description: Ian Aberdeen, Aberdeen Consulting Pty Ltd., Kilmore, VIC.

Table 34 Lolium varieties

	'Ceres	*'Yatsyn'	*'Samson'	*'Nui'	*'Bronsyn'
	Kingston'				
FLAG LEAF	LENGTH	(mm)			
mean	195.93	215.64	233.47	222.25	223.03
std deviation	44.08	66.73	45.68	50.06	44.65
LSD/sig	22.11	ns	P≤0.01	P≤0.01	P≤0.01
FLAG LEAF	WIDTH (1	mm)			
mean	4.02	5.92	4.42	5.28	5.67
std deviation	0.93	1.27	0.96	0.95	1.33
LSD/sig	0.48	P≤0.01	ns	P≤0.01	P≤0.01
PULLED STE	EM LENG	TH (cm)			
mean	791.46	795.13	785.06	865.68	876.04
std deviation	120.61	117.54	115.80	123.81	121.36
LSD/sig	52.30	ns	ns	P≤0.01	P≤0.01
SPIKE LENG	TH (mm)				
mean	235.25	253.58	237.14	263.04	252.90

Table 34 continued

std deviation	41.24	34.28	32.98	40.00	36.90
LSD/sig	16.36	ns	ns	P≤0.01	ns
SPIKELET LI mean std deviation LSD/Sig	ENGTH (13.66 2.31 1.02	(mm) 14.15 2.33 ns	14.79 2.53 ns	15.46 2.23 P≤0.01	15.42 2.23 P≤0.01

Prunus persica Peach

'Snowbrite'

Application No: 1998/125 Accepted: 13 Apr 1999. Applicant: **Zaiger's Inc. Genetics**, Modesto, California,

Agent: Fleming's Nurseries & Associates Pty Ltd, Monbulk, VIC.

Characteristics (Figure 28) Tree: size large, vigorous, growth upright, density medium, bearer regular, productive, trunk size medium - stocky, texture medium shaggy, colour RHS 197B, branch size medium, branch texture smooth to medium rough, lenticels; medium size, medium number. Leaf: size large mean length 165mm, mean width 41.3mm, form lanceolate acutely pointed, thickness medium, margin crenate, petiole medium length medium thickness, nectaries reniform, number of nectaries varying from 1 to 4 mean number is 2, nectary size large, nectary position on the base of the leaf blade and upper portion of the petiole, leaf colour upper surface green to dark green RHS 138A, lower surface light green to jade green RHS 137B. Flower: bud size large, bud form plump, pubescence pubescent, flower size large, form rosaceous, pollen present, petal colour pink. Fruit: size large, mean axial diameter 70mm, mean diameter transversely in suture plane 70mm, form globose nearly symmetrical slightly retuse at stem end, suture shallow extending from base to apex, ventral surface usually rounded, some fruit very slightly lipped, apex varies from rounded to slight pistil point, base slightly retuse, cavity rounded to slightly elongated in suture plane mean depth 12.7mm mean breadth 22mm. Skin: thickness medium, texture medium tenacious to the flesh, down moderate medium length, tendency to crack none, colour yellowish white RHS 9D to light yellow RHS 12B ground colour with a red overcolour RHS 40A to RHS 41A. Flesh: ripens evenly, texture very firm, fibers few small tender, amygdalin undetected, eating quality excellent, flavour excellent subacid mild, juice moderate, aroma moderate, colour white RHS 155A, pit cavity greyish yellow to yellowish grey RHS 8D. Stone: type freestone, size large mean length 35mm mean width 24mm, form obovoid, apex acuminate, base straight to slightly oblique, sides equal to unequal, usually unequal, surface furrowed towards apex pitted toward base, ridges rounded, tendency to split very slight, colour light brown to brown RHS 165C. Keeping quality good. (Note: all RHS colour chart number refer to 1986 edition.)

Origin and Breeding Controlled pollination: selected seedling ('O'Henry' peach x 'Giant Babcock' peach) x selected seedling ('May Grand' nectarine x 'Sam Houston' peach). A large number of seedlings of this parentage were grown under close observation and one such seedling which

is the new variety having especially desirable fruit characteristics and as a result was selected for reproduction and commercialisation. Selection criteria: white flesh, early maturity. Propagation: 'Snowbrite' will be commercially propagated in Australia by budding onto peach root stock budwood is obtained from the original quarantine mother trees. Breeder: Chris Floyd Zaiger, Zaiger's Inc. Genetics, Modesto, California, USA.

Choice of Comparators Prunus persica 'White Lady' and Prunus persica 'Sugar May' are selected as comparators as they are both varieties of common knowledge in Australia. 'White Lady' differs from 'Snowbrite' as it matures approximately 13 days later. 'Sugar May' differs from 'Snowbrite' as 'Sugar May' has a semi-clingstone type stone and a low acid flavour; fruit matures 8 days before 'Snowbrite' which has a freestone type stone and subacid flavour. The parents of 'Snowbrite' were not considered as comparators as they are non-commercial breeding lines developed by the applicant.

Comparative Trial The information contained herein is based on overseas data sourced from the US Plant Patent Number Plant 8,195 dated April 6, 1993, with data confirmed by local observations where possible. Local location: Monbulk, VIC (Latitude 38° S, elevation 200m).

Prior Applications and Sales
Country Year Current Status Name Applied
USA 1991 Granted 'Snowbrite'

First sold overseas 1993. First sold in Australia Aug 1998.

Description: Zoee Maddox, Fleming's Nurseries Pty. Ltd. Monbulk, VIC.

Rosa hybrid Rose

'Tanarua'

Application No: 2000/294 Accepted: 20 Nov 2000.

Applicant: Rosen Tantau, Mathias Tantau Nachfolger, Uetersen, Germany.

Agent: Sovereign Nurseries Pty Ltd, Catherine Field, NSW.

Characteristics (Figure 1) Plant: narrow, bushy, medium height and width. Young shoot: anthocyanin colouration weak to medium (medium), bronze to reddish brown. Stem: prickles present, flat lower side, many short prickles, few long. Leaf: size medium (large), dark, medium glossiness, leaflet; cross section slightly concave, strong undulation (medium), terminal leaflet; blade medium length (mean 75.7mm) and width (mean 45.4mm), (petiole length mean 12.2mm), shape of base rounded (obtuse). Flowering shoot: number of shoots medium. Flower: pedicel very few hairs (absent); bud ovate; type double, number of petals few to medium, diameter medium (mean 82.2mm), irregularly rounded, upper profile convex (flattened convex), lower profile concave, medium fragrance. Sepals extensions medium sometimes strong. Petal: medium size (width mean 41.2mm), inner side; colour of middle zone of between ca. RHS 22A and RHS 24C (24 C-D), more mature flowers and outer petals more pink, between ca. RHS 29C and RHS 38C, marginal zone between ca. RHS 24C and RHS 29C, orange-pink, outer petals more pink, between ca. RHS 29C and RHS 38C, spot at base present, large (medium), yellow ca. RHS 12A (12 B), sometimes with a flush of orange, outer side; middle zone between ca. RHS 16C and RHS 17D, yellow-orange with a flush of pink, marginal zone between ca. RHS 16C, RHS 17D and RHS23D, yellow-orange with a flush of pink, basal spot present, large, ca. RHS 4C, yellow-greenish, ca. RHS 4C, laterally with a flush of orange, reflexing of margin medium to strong (medium), undulation weak, stamens yellow (orange-yellow), flowering continuous. (Data in parenthesis based on local observation, all RHS colour chart number used in local observation is from 1986 edition.)

Origin and Breeding Controlled pollination: seed parent 'Parero' x pollen parent 'Ruirovingt' syn Prophyta in planned breeding program. The main difference to pollen parent is in the colour of the middle zone of the inner side of the petal (RHS 22A-RHS 24C *Vis a Vis* RHS 36C-RHS 50D), dark leaf colour and reflexing of petal margins. Selection criteria: flower colour. Propagation: vegetative over several generations. Breeder: Hans Jurgen Evers, Uetersen, Germany.

Choice of Comparators The qualified person considers that 'Tennessee' (b) is the most similar variety of common knowledge on the basis of flower colour. However, the main difference is it has slightly darker (RHS 28B-C) petal colour compared to the candidate variety. 'Interpeach' syn Peachy was initially considered but later rejected because of its lighter petal colour.

Comparative Trial The detailed description published herein is based on CPVO Report ROO 2554 dated 21 Jan 1999 and local observations made in Catherine Field, NSW in Mar 2001. The data from local observation is given in parenthesis.

Prior Application and Sales

1 Hot Application and Saics						
Year	Current Status	Name Applied				
1997	Granted	'Tanarua'				
1998	Applied	'Tanarua'				
1998	Applied	'Tanarua'				
1998	Granted	'Tanarua'				
1998	Applied	'Tanarua'				
1998	Granted	'Tanarua'				
	Year 1997 1998 1998 1998	Year Current Status 1997 Granted 1998 Applied 1998 Applied 1998 Granted 1998 Applied				

First sold in Germany in Sep 1997.

Description: Mike Barrett and Associates, Beecroft, NSW.

'Tanotika'

Application No: 2000/296 Accepted: 14 Nov 2000.

Applicant: Rosen Tantau, Mathias Tantau Nachfolger, Uetersen, Germany.

Agent: Sovereign Nurseries Pty Ltd, Catherine Field, NSW.

Characteristics (Figure 2) Plant: habit narrow, bushy, height low, width medium. Young shoot: anthocyanin colouration very weak to weak, hue bronze to reddish brown. Stem: prickles present, shape of lower side concave, short prickles absent or very few, long prickles number medium. Leaf: size (medium), green colour, glossiness of upper side medium, leaflet; cross section flat, undulation of margin weak, terminal leaflet; length of blade medium (mean 51.1mm), width medium (mean 33.7mm), (petiole

length mean 15.8mm), shape of base wedge-shaped. Flowering shoot: number of flowers medium. Flower pedicel: number of hairs very few. Flower bud: shape of longitudinal section ovate. Flower: type double, number of petals medium to many, diameter medium to large (medium mean 74.0mm), view from above irregularly rounded, side view of upper part flat, side view of lower part concave. Fragrance weak. Sepals extensions medium. Petal size medium (width 33.7mm), colour inner and outer side greenish-white, (ca. RHS 155C), basal spot inner side present, small, colour yellow-green (ca. RHS 1D), basal spot outer side absent, reflexing of margin strong, undulation of margin weak. Stamen: filament yellow; flowering habit almost continuous. (Data in parenthesis based on local observation, all RHS colour chart number used in local observation is from 1986 edition.)

Origin and Breeding Controlled pollination: seed parent RT 81 426X x pollen parent RT 83 126 in a planned breeding program. Both parents are breeding stock plants within the breeding program. The main difference to the parent plants is smaller flower diameter and intermediate greenish-white colouration of petals. Selection criteria: uniform greenish-white petal colour. Propagation: vegetative over several generations. Breeder: Hans Jurgen Evers, Uetersen, Germany.

Choice of Comparators The qualified person considers that 'Prebian' (b) syn Bianca (b) is the most similar variety of common knowledge on the basis of flower colour. However, the main difference is the comparator has no basal spots on either side of petal.

Comparative Trial The detailed description published herein is based on CPVO Report ROO 2548 dated 21 Jan 1999 and local observations made in Catherine Field, NSW in Mar 2001. The data from local observation is given in parenthesis.

Prior Application and Sales

Country	Year	Current Status	Name Applied
EU	1997	Granted	'Tanotika'
Canada	1998	Applied	'Tanotika'
Colombia	1998	Applied	'Tanotika'
Japan	1997	Applied	'Tanotika'
Poland	1998	Granted	'Tanotika'
Israel	1997	Applied	'Tanotika'

First sold in Germany in Oct 1997. First Australian sale May 2000.

Description: Mike Barrett and Associates, Beecroft, NSW.

Serruria florida x Serruria rosea Serruria

'Carmen'

Application No: 2000/138 Accepted: 3 May 2000.

Applicant: Agricultural Research Council, Elsenburg,

South Africa.

Agent: Proteaflora Enterprises Pty Ltd, Monbulk, VIC.

Characteristics (Table 35, Figure 14) Plant: dense, upright, compact Spring flowering shrub with numerous small deep pink inflorescences. Stem: moderate anthocyanin

colouration present. Leaf: alternate arrangement, much divided dark green rhomboid leaves, averaging 44mm long, with an average of 16 terete segments. Inflorescence: small inflorescences with deep pink bracts and florets, average diameter 30mm, ovate involucral bracts with sessile bases and acuminate apices. The dense cluster of florets hirsute at their apices, and grey (RHS 201B). In aged inflorescences, the strongly red-purple coloured perianth (RHS 59B) collapse over the involucral bracts and darkens the overall appearance of the inflorescence. Flowering season: commences in Monbulk in early Oct, with peak flowering in Nov. (All RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Open pollination followed by seedling selection: three generations of open pollination and selection. In 1976, a natural hybrid between *S. florida* and *S. rosea* was observed in a plantation. Seed originating from open pollination of this hybrid, was collected and seedlings raised. Seed was collected and seedlings raised from open pollinated plants of this generation, and from two subsequent generations. 'Carmen' was selected from the 3rd generation of open-pollination. Breeding took place in Elsenburg, South Africa between 1976-1992. Selection criteria: numerous small dark pink flower heads, compact plant habit. Propagation: from cuttings. Breeder: Agricultural Research Council- Fynbos, Elsinburg, South Africa.

Choice of Comparators 'Sugar N Spice' is chosen because it is the most similar variety of common knowledge. The other comparator, *S. florida* X *S. rosea* unnamed hybrid of South African origin, was chosen for its similar inflorescence and leaf characteristics.

Comparative Trial Location: Monbulk, VIC, Autumn 1999-Spring 2000. Conditions: trial conducted outdoors, in a sunny position, plants propagated from cutting in Autumn 1999, rooted cuttings planted into 140mm pots filled with soilless potting mix (pine bark base), nutrition maintained with slow release fertilisers, plants pinched in Dec 1999, and Jan 2000. Assessment in Oct-Nov 2000. Trial design: fifteen pots of each variety arranged in a randomised design with 3 replicates. Measurements: from all 15 plants. One sample per plant.

Prior Applications and Sales

No prior application and overseas sale. First Australian sale Aug 2000.

Description: Paul Armitage, Proteaflora Nursery Pty Ltd, Monkulk, VIC.

Table 35 Serruria varieties

'Carn	nen' *'Sugar N Spice'	* S. florida X S. rosea
ANTHOCYANIN COL mediu		
LEAF GREEN COLOU dark g		een medium – dark green

INFLORESCEN	ICE NUMBER	/ PLANT	
mean	51.13	21.26	64.13
std deviation	8.77	8.52	26.64
LSD/sig	12.19	P≤0.01	ns
BRACTS: SHA	PE OF APICES	S	
	acuminate	acuminate	narrow acuminate
BRACTS: ATTI	TUDE TO TUI	FT OF FLOWE	ERS
	oblique	adpressed	deflexed
		to	
		perpendicular	
BRACTS: LENG	GTH TO WIDT	TH RATIO	
mean	1.88	2.41	2.64
std deviation	0.12	0.12	0.22
LSD/sig	0.11	P≤0.01	P≤0.01
BRACTS: COL	OUR AT ANTI	HESIS (RHS, 1	986)
midrib	red-purple	red-purple	red-purple
	RHS 59A	RHS 60A	RHS 60B
venation	RHS 60C	RHS 63B	RHS 59D
margins	RHS 65C	RHS 62D	RHS 65C

Sporobolus virginicus Sand Couch

'Ozlawn'

Application No: 1999/284 Accepted: 22 Oct 1999. Applicant: **Todd Layt,** Clarendon, NSW.

Characteristics (Table 36, Figure 56) Plant: long rhizomatous perennial, ground–hugging habit, thickly matted turf, height low. Stem: short, sheath pale. Stolons: relatively long and thick, highly branched, internode colour pale, little red tone. Leaf: angle of leaves to stem usually 45 degrees, leaves relatively long and wide, bluish dark green in colour, open rather than folded leaf, few ligule hairs.

Origin and Breeding Controlled pollination: 'Nathus Green' x experimental line AB1. The two parents were grown in a hot house, protected from other pollen. The flower heads were regularly rubbed together to ensure pollination. After maturation the seed was collected from each plant and sown into open trays. The germinated seed was pricked out into tube trays, 43 from the, 'Nathus Green', and 18 from AB1. These plants were monitored and 'Ozlawn' selected from the 43 plants that had the 'Nathus Green' as female parent and AB1 as the male. Selection criteria: 'Ozlawn' was selected for its branching stolons like 'Nathus Green' and its broader leaf like AB1. Propagation: one plant of 'Ozlawn' was multiplied from stolon cuttings and grown in a sample plot and found to show the desirable characteristics in the field situation and found to be uniform and stable. Breeder: Todd Layt, Clarendon, NSW.

Choice of Comparators Both parents, 'Nathus Green' (b) and AB1 were chosen as comparators. In addition two similar ecotypes which are known 69 and WA-2 were also included. Other experimental lines (AB2, AB3 and AB4) were initially considered but later were rejected because of their less branching habit. No other similar varities of common knowledge have been identified.

Comparative Trial Location: Windsor, NSW, spring 1999 – autumn 2000. Conditions: trial conducted in 140mm pots, plants produced by stolon division. The pots were fertilised with Osmocote® and watered daily. Each pot was trimmed once, all at the same time. The potting mix was ANL No.2 mix. Trial design: 50 of each of the trial plants arranged in random rows. Measurements: taken from 20 plants of each type in the trial, selected at random from the 50 trial plants, one sample from each plant for the measured characteristics.

Prior Applications and Sales

No prior applications. 'Ozlawn' was first sold in Australia in Nov 1998.

Description: Brian Quinn, Newham, VIC.

Table 36 Sporobolus varieties

Table 30 3					
	'Ozlawn'	*'Nathus		*WA-2	*69
		Green'	b		
ANGLE OF L	FAFTO	STFM- 4	th or 5th	leaf down	(degree)
mean	46.50	49.00	71.75	46.00	46.75
std deviation	16.2	17.1	17.2	16.4	12.4
LSD/sig	11.4	ns	P≤0.01	ns	ns
Lobraig	11.1	113	1 20.01	113	113
ANTHOCYA	NIN COL	OURAT	ION OF	INTERN	ODE (RHS,
1995)					
	183B	183B	183B	178A	absent
INTERNODE	LENCTI	I let mae	mast tillan	torrondo	maata (mm)
	23.40	25.24	22.97	31.27	9.76
Mean		3.22	4.7	31.27 4.4	3.8
std deviation	3.9				
LSD/sig	2.66	ns	ns	P≤0.01	P≤0.01
INTERNODE	WIDTH	-1st neare	est tiller to	owards ro	ots (mm)
mean	2.29	1.33	1.15	1.25	1.45
std deviation	0.6	0.3	0.3	0.3	0.4
LSD/sig	0.27	P≤0.01			P≤0.01
L3D/sig	0.27	1 20.01	1 20.01	1 20.01	1 20.01
LEAF COLO	UR (RHS,	1995)			
	146A	146A	146B	146B	144A
LEAF LENG	ΓLI 1th α	or 5th day	vn on till	or (mm)	
	74.70	68.15	56.60	57.15	46.05
mean					46.95
std deviation	23.1	23.6	25.3	17.6	14.8
LSD/sig	16.50	ns	P≤0.01	P≤0.01	P≤0.01
LEAF WIDTH	I – 4th or	5th down	on tiller	(mm)	
mean	3.62	2.19	2.13	2.55	2.41
std deviation	0.7	0.2	0.2	0.4	0.5
LSD/sig	0.32	P≤0.01	P≤0.01	P≤0.01	P≤0.01
LEAF CROSS	S-SECTIO	N (1- fo	lded 4- 1]at)	
mean	3.50	1.45	2.15	2.40	1.95
std deviation	0.5	0.5	0.4	0.5	0.6
LSD/sig	0.39	P≤0.01	P≤0.01	P≤0.01	P≤0.01
TILLER WID	TH NEAL	R BASE ((mm)		
mean	1.43	0.90	0.96	1.00	0.93
std deviation	0.3	0.2	0.1	0.1	0.19
LSD/sig	0.13	P≤0.01	P≤0.01	P≤0.01	P≤0.01
TILLER NUM	/RFP				
TILLLIK INON	very	very	few	few	few
	many	many	10 11	10 11	10**
	y	many			

Sutera cordata Sutera, Bacopa

'Novasnow'

Application No: 2000/207 Accepted: 18 Sep 2000.

Applicant: **RW Rother**, Emerald, VIC.

Agent: Tony Kebblewhite t/a Florabundance Wholesale

Nursery, Verrierdale, QLD.

Characteristics (Table 37, Figure 21) Plant: perennial, habit prostrate (mean width 322.10mm), height very short (mean 30.33mm). Stem: pubescent, internode short (mean 18.23mm at 3rd internode). Leaf: opposite, small, leaf length (mean 25.45mm), leaf width (mean 20.30mm), shape ovate, mature upper leaf colour green (RHS 137B), mature lower leaf colour (RHS 137C). Flower: round, 5 lobed, fused at base, diameter small (mean width 11.71mm), colour white (RHS 155D), flower throat colour (RHS 14A) (Note: all RHS colour chart numbers refer to the 1986 edition.)

Origin and Breeding Spontaneous mutation: arose as a sport in a bed of *Sutera* 'Blizzard' in Gensingen, Germany. The mutant was selected due to its more vigorous growth habit and its much larger flowers. The parental variety has a similar growth habit but with shorter internodal spacing. Selection criteria: superior flowering into warmer weather, better resistance to fungal diseases. Propagation: several plants were vegetatively propagated from the original plant and found to be uniform and stable. Breeder: L. Kientzler, Innova Plant BV. Gensingen, Germany.

Choice of Comparator 'Blizzard' was selected as the sole comparator because it is the parental variety and the most similar variety of common knowledge. No other similar varieties have been identified.

Comparative Trial Location: Verrierdale, QLD, spring 2000. Conditions: trial conducted under full sun. Plants propagated vegetatively with rooted cuttings grown in 140mm pots with soilless potting media. Osmocote Plus being the only fertilizer used with pest and disease treatment applied as needed. Trial design: 30 pots of each variety in a random design. Measurements: taken from all trial plants.

Prior Applications and Sales

Country	Year	Current Status	Name Applied
EU	2000	Applied	'Novasnow'
Canada	2000	Applied	'Novasnow'
USA	2001	Applied	'Novasnow'
Japan	2001	Applied	'Novasnow'

First sold in EU and USA in Jan 2000. First sold in Australia in Sep 2000.

Description: Tony Kebblewhite, Florabundance, QLD.

Table 37 Sutera varieties

	'Novasnow'	'Blizzard'
LEAF WIDTH (mm)	
mean	20.30	15.99
std deviation	2.66	1.81
LSD/sig	1.61	P≤0.01
LEAF COLOUR (R	HS, 1986)	
immature upper	143B	143B
immature, lower	143C	143C
mature, upper	137B	137B
mature, lower	137C	137D
FLOWER DIAMET	ER (mm)	
mean	11.71	10.47
std deviation	0.86	0.96
LSD/sig	0.82	P≤0.01
COROLLA LOBE V	VIDTH (mm)	
mean	3.89	2.91
std deviation	0.39	0.29
LSD/sig	0.29	P≤0.01

Trifolium pratense Red Clover

'Broadway'

Application No: 2001/060 Accepted: 16 March 2001. Applicant: **AgResearch Limited,** Palmerston North, New Zealand

Agent: AgResearch (Australia) Limited, Drumcondra, VIC.

Characteristics (Table 38, Figure 58) Plant: diploid, habit prostrate, height low, spread wide, mid season maturing. Stem: density high, length medium (65cm), thin (3.2mm), anthocyanin moderate, pubescence high, internode length medium, number per stem medium (mean 12). Leaf: length short (26.3mm), width narrow (10.2mm), mark present in 93%, colour medium light green. Flower: (50% 43 days from 1st Nov), colour medium 53% (RHS 77C/D) to 47% dark (RHS 77B).

Origin and Breeding Recurrent Phenotypic selection: seven cycles of selection within and between 27 variable populations originating from Spain and Portugal collected by Grasslands staff in 1986. The original population was characterised by less prostrate/non spreading plant habit, smaller and more variable leaf and moderately high formononetin levels. Repeated selection for spreading growth habit, leaf size and formononetin levels produced breeding lines, which were then evaluated for seed production potential. From these lines, a uniform single line known as GF68 was selected to become 'Broadway'. Selection criteria: growth habit, larger leaf size, uniformity and seed production. 'Broadway' differs from original source material in characters used for selection criteria. Propagation: by seed. Breeder: Dr W. (Bill) Rumball, Palmerston North, New Zealand.

Choice of Comparators 'Grasslands Hamua', 'Grasslands Colenso', 'Grasslands Turoa' and 'Astred' were chosen as comparators. 'Redwest' was also included because of it's close association with 'Grasslands Hamua'. 'Redquin' and 'Quinequeli' were chosen because of their close association to each other and similarities to 'Grasslands Hamua'. In addition, 'Renegade' and 'PAC 19' were also included. 'Grasslands G27' was not included as it is a tetraploid variety. The original source materials were not used for reasons stated above.

Comparative Trial Location: AgResearch Grasslands Research Centre, Palmerston North, New Zealand (Latitude 40°23′S, elevation 33m), autumn-summer 2000/2001. Conditions: plants raised from seed sown on 22/3/00 in seed flats in controlled glasshouse conditions. Plants trimmed on 28/4/00 to enhance establishment and placed in the open for hardening. Plants transplanted into open field site on 8/7/00 at 60cm between plants and 120cm between plots. Trial design: randomised block 10 plots of 10 plants of each variety arranged in a completely randomised design in each block. Measurements: from all available plants.

Prior Applications and Sales

Country	Year	Current Status	Name Applied
New Zealand	2001	Applied	'Grasslands
No prior sale.			Broadway'

Description: **Jeff E. Miller,** AgResearch Grasslands, Palmerston North, NZ

Table 38 Trifolium varieties

	'Broadway'	* 'G. Hamua'	*'G. Colens	o'*'G. Turoa'	*'Astred'	*'Redwest'	*'Redquin'	*'Quinqueli'	*'Renegade'	*'PAC19'
DAYS TO ME	EAN FLOW	ERING (Da	ys from 1st	flower on 1	/11/2000)					
mean	42.6	46.2	46.0	74.5	42.7	34.5	49.0	53.6	34.7	61.9
std deviation	9.5	16.2	13.8	7.0	12.7	12.2	7.4	5.8	15.1	14.8
LSD/sig	4.9	ns	ns	P≤0.01	ns	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01
STEM LENG	TH (cm)									
mean	64.7	66.6	60.7	79.0	80.7	56.6	72.5	95.5	64.5	75.5
std deviation	11.9	18.0	15.6	10.0	18.5	15.2	13.6	17.3	16.2	16.9
LSD/sig	6.5	ns	ns	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01	ns	P≤0.01
STEM THICK	NESS (mm	 1)								
mean	3.15	3.79	3.60	3.75	3.57	3.76	3.87	3.84	4.30	4.51
std deviation	0.44	0.60	0.51	0.45	0.49	0.62	0.57	0.45	0.69	0.70
LSD/sig	0.33	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P<0.01	P≤0.01	P≤0.01
NUMBER OF	STEM IN	FERNODES	(>0.5cm)							
mean	12.0	10.6	9.8	13.4	12.3	8.7	11.8	22.9	8.6	11.7
std deviation	2.2	2.9	2.4	2.0	2.8	2.4	2.1	2.9	2.6	2.8
LSD/sig	3.2	ns	ns	ns	ns	2.4 P≤0.01	ns	2.9 P≤0.01	2.0 P≤0.01	ns
						1 =0.01		1 20.01	1 =0.01	
LEAF LENG					20.5	22.0	247	20.0	26.2	21.6
mean	26.3	31.2	28.2	24.3	28.5	32.0	34.7	30.9	36.2	31.6
std deviation	4.8	5.3	5.2	3.9	5.0	5.5	7.2	4.8	6.0	5.9
LSD/sig	2.5	P≤0.01	ns	ns	ns	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P≤0.01
LEAF WIDTH										
mean	10.2	12.1	11.9	7.9	11.1	13.3	13.8	12.2	14.7	13.2
std deviation 2	2.2	2.7	2.8	1.8	2.6	3.0	3.3	3.8	3.1	3.0
LSD/sig	1.1	P≤0.01	P≤0.01	P≤0.01	ns	P≤0.01	P≤0.01	P≤0.01	P≤0.01	P<0.01
PLANT GRO	WTH HAB	 T								
	prostrate	interm-	interm-	semi-	semi-	interm-	erect	semi	erect	semi
	•	ediate	ediate	prostrate	prostrate	ediate		erect		erect
STEM DENS	ITV									
OTEM DEMO	high	medium	medium	very high	interm-	medium	medium	medium	low	low
	J	high	high	, 6	ediate	high	low	low		
STEM PUBES	SCENCE (4	th internode)							
	high	interm-	interm-	interm-	interm-	medium	medium	low	high	low
	C	ediate	ediate	ediate	ediate				C	
		high	low	high	high					
PLANTS WIT	TH LEAF M	IARKING (9	%)							
	92	92	88	94	94	100	97	87	93	94
FLOWER CO	LOUR PER	CENTAGE								
Light (RHS 75	5A-C)									
	0	5	50	4.5	9.5	16	27	13	3	4
Medium (RH										
	52.5	83.5	46.0	77.5	73.5	72.0	62.5	80.0	59.0	79.0
Dark (RHS 7										
	47.5	11.5	3.0	18.0	17.0	11.0	8.5	7.0	38.0	17.0
Other						1 white	2 white			

Triticum aestivum Wheat

'Anlace'

Application No: 1999/089 Accepted: 15 Apr 1999. Applicant: Luminis Pty Ltd, Adelaide, SA and

Grains Research and Development Corporation, Barton,

ACT.

Characteristics (Table 39, Figure 44) Plant: spring wheat, habit intermediate during tillering, height medium, maturity medium to late. Glaucosity: flag leaf sheath medium strong, leaf blade medium, culm strong, ear strong. Stem: pith thin. Ear: colour white, shape tapering, density medium, awns absent, scurs present on tip only, scurs short, rachis hairiness medium, lower glume broad shouldered elevated with a short moderately curved beak, internal hairs medium, lemma beak moderately curved. Grain: colour white, texture soft, shape ovoid to elongate, brush short. Seasonal type: spring. Disease resistance: Stem rust resistant, stripe rust resistant, leaf rust Lr24, flag smut moderately resistant, cereal cyst nematode moderately resistant and tolerant, bunt very susceptible. Glutenin alleles: a,c,a,c,b,c alleles at the Glu-A1, Glu-B1, Glu-D1, Glu-A3, Glu-B3 and Glu-D3 loci respectively.

Origin and Breeding Controlled pollination: backcrossing program using 'Amigo' as a donor of rust resistance to the recurrent parent 'Tatiara'. Full pedigree: Amigo/4*Tatiara. Except for different rust resistance 'Anlace' is very similar to 'Tatiara' and another derivative 'Bowie'. Backcrossing was performed by the National Cereal Rust Control Program, Sydney University during 1984 to 1986, further selection occurred at Roseworthy and then testing for yield and quality was carried out across sites in SA during 1993 to 1999. Propagation: seed produced by self-pollination. Breeder: Gil Hollamby, Roseworthy Campus, The University of Adelaide, SA, with the help from the National Cereal Rust Control Program.

Choice of Comparators 'Tatiara', 'Bowie' and 'Buckley' were chosen as comparators because they are closely related to 'Anlace' and very much similar in phenotype. 'Tatiara' is the recurrent parent. No other varieties similar varieties of common knowledge have been identified.

Comparative Trial Location: Roseworthy Campus, Roseworthy South Australia winters 1998, 1999 and 2000. Conditions: trials conducted in the field, sown at optimal time in a loamy mallee soil under normal farm practice of seeding rate and fertilisation, 1998 average, 1999 a dry year, 2000 above average but dry during ear emergence. Trial design: randomised block design of 3 blocks, plots were 6 rows wide and 3.2m long, approximately 1000 plants per plot. Measurements: 5 plants per plot randomly selected, other measurements, including plant height and ear emergence, were measured at other sites in SA.

Prior Applications and Sales

No prior applications. First sold in Australia in May 1999.

Description: Gil Hollamby, The University of Adelaide, Roseworthy Campus, Roseworthy, SA.

Table 39 Triticum varieties

	'Anlace'	*'Tatiara'	*'Bowie'	*'Buckley'
TIME TO EA	R EMERGE	NCE 1999 (days from	31 Aug)
mean	17.3	16.0	16.0	16.3
std deviation	0.6	0.0	0.0	0.6
LSD/sig	1.2	P≤0.01	P≤0.01	ns
STEM RUST	GENES			
	Sr24+	none effective	Sr38	Sr30
LEAF RUST	GENES (Pla	nte)		
	Lr24	Lr1Lr20	Lr1Lr37	none effective

'Babbler'

Application No: 2000/143 Accepted: 6 Nov 2000. Applicant: Department of Agriculture for and on behalf of the State of New South Wales, Orange, NSW and Grains Research and Development Corporation, Barton, ACT.

Characteristics (Table 40, Figure 47) Plant: growth habit semi-erect, height medium, straw pith thin. Flag leaf: glaucosity medium. Ear: emergence early, glaucosity medium, shape tapering, density medium to dense, colour white, awns at tip medium. Lower glume: shoulder width narrow to medium, shoulder shape slightly sloping, beak shape straight, beak length medium. Lowest lemma: beak shape straight. Grain: colour white. Seasonal type: spring.

Origin and Breeding Controlled pollination: parentage 'Janz'/'Lark'. Initial cross was made in 1986. F₁ plants were grown in 1987 and F2 populations in 1988. Single head selections were taken from the F2 and grown as single rows in the F₃. Pedigree selection was conducted in the F₃, F₄, F₅ and F₆ generations, with selections being made on the basis of stem rust, leaf rust, stripe rust and Septoria tritici blotch resistance, height and straw strength. F₅ derived bulks were harvested from the F₆ generation. These were evaluated for yield and quality, in unreplicated experiments, in the F₇ and F₈ generations during 1993 and 1994. Detailed disease resistance assessment was conducted in the period 1993 to 1997. Replicated trials have been conducted from 1996 to 1999, to establish merits of the line. 'Babbler' was identified as possessing the most desirable combination of yield, disease resistance and grain quality. Selection criteria: high yield, resistance to stem rust, leaf rust, stripe rust, grain quality. Propagation: seed. Breeder: NSW Agriculture.

Choice of Comparators 'Janz' and 'Lark' were the parents of 'Babbler' and as such were chosen as comparators. 'Diamondbird' is used as a commonly used variety in the same agro-ecological region . 'Wylah' and 'Whistler' were rejected for their winter habit as opposed to spring habit of 'Babbler'. 'Cunningham', 'H45' and 'Silverstar' have maturity differences that exclude them from the trial.

Comparative Trial Location: sown on Temora Agricultural Research and Advisory Station, Barmedman Rd, Temora NSW. Conditions: sown into red clay soils on good moisture at 40kg/Ha seeding rate with 100kg/ha of MAP. Trial design: randomised plots 6m x 1.42m in 2 replicates. Data collection: 10 specimens per replicate randomly selected from 1,750 plants per plot.

Prior Applications and Sale

No prior application. First sold in Australia in May 2000.

Description: Paul Breust, NSW Agriculture, Temora, NSW.

Table 40 Triticum varieties

	'Babbler'	*'Janz'	*'Lark'	*'Diamond- bird'
PLANT HEIC	HT (cm)			
mean	86.62	85.50	82.85	95.65
std deviation	4.05	4.74	4.00	2.68
LSD/sig	6.25	ns	ns	P≤0.01
EAR EMERG	ENCE			
	early	early	medium -	early –
	•		early	medium
EAR DENSIT	Ϋ́			
	medium -	medium -	medium -	lax –
	dense	dense	dense	medium
AWNS OR SO	CURS AT TI	P OF EAR		
	medium	long –	medium -	medium -
		medium	long	long
LOWER GLU	ME SHOUI	LDER WID	TН	
	narrow-	narrow	narrow	narrow
	medium			
LOWER GLU	ME SHOUI	LDER SHA	 PE	
	slightly	elevated	slightly	slightly
	sloping		sloping	sloping
LOWER GLU	ME BEAK	LENGTH		
	short	long	short	long
LOWER GLU	ME BEAK	SHAPE		
	straight	slight	straight	slight
	2	curve	Č	curve
LOWER GLU	ME EXTEN	T OF EXT	ERNAL HA	AIRS
	medium-	weak	weak	weak
	strong			

'Clearfield WHT JNZ'

Application No: 2000/102 Accepted: 28 Mar 2000. Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

Characteristics (Table 41, Figure 54) Plant: spring wheat, habit semi-erect, height short (mean 66.68cm), maturity medium. Stem: pith thick. Flag leaf: tendency to be recurved absent, sheath glaucosity strong. Ear: density dense (node length 3.80cm), length short (mean 7.46cm), shape in profile parallel sided, colour white, glaucosity medium to strong, awns present and medium (mean 5.69cm). Lower glume: shoulder width narrow, shoulder

shape sloping, internal hairs medium, glume beak length short (mean 5.03mm), glume beak shape straight. Lemma: beak shape straight. Grain: colour white, hard, shape oval, germ face steep, width narrow, brush length medium, brushend profile medium. Herbicide Resistance: tolerant to imidazolinone based, MIDAS herbicide.

Origin and Breeding Controlled pollination: seed parent 'Janz'*4 x pollen parent 'Fidel' selection 3 in a planned breeding program. The seed parent is susceptible to the imidazolinone herbicide group. 'Clearfield WHT JNZ' is tolerant to the imidazolinone herbicide group. The final backcross was made in 1995 at Agriculture Western Australia, South Perth, WA. The breeding method used strategic backcrosses in conjunction with the F₂ progeny method. This variety was backcrossed three times and individual plants selected at each back cross for herbicide tolerance to imidazolinone. Selection criteria: tolerance to imidazolinone herbicide group. Propagation: by seed through selection and testing in small scale breeders trials and performance testing by Agriculture Western Australia's Crop Variety Testing Program in various regional locations in WA. Breeder: Dr. Iain Barclay, Agriculture Western Australia, South Perth, WA.

Choice of Comparators 'Janz' was chosen as a comparator because it is the recurrent seed parent of 'Clearfield WHT JNZ' 'Fidel' was initially considered but was later excluded because it is a red grained, long season variety.

Comparative Trial Location: Paddock 1EB, Wongan Hills Research Station, Agriculture Western Australia, Wongan Hills WA. Sown 6/7/00. Conditions: plants raised in sandy loam pH 4.65 in CaCl₂ in open beds. Two blocks were sown, block A was a measurement block and block B was a chemical treatment block. Both blocks were treated with Sprayseed 250 ® at 2 l/ha on 6/7/99 for weed control and Tilt 50Ec ® was sprayed at 0.5 l/ha for rust on 1/9/00. Block A was sprayed with Yield ® at 21/ha as a pre-emergent for rye grass on 6/7/00, Achieve ® at 380gm/ha as a postemergent for rye-grass on 31/7/00 and Jaguar ® at 0.75 l/ha for broadleaf control on 11/8/00. Block B was sprayed with MIDAS ® an imidazolinone based herbicide at various rates (3x recommended rate; recommended rate; 75% recommended rate & Nil) on 14/8/00 to show the distinct character for 'Clearfield WHT JNZ' of tolerance to imidazolinone compared to the comparator 'Janz' which is not tolerant to imidazolinone. Agyield at 80kg/ha was drilled with the seed and both blocks were top-dressed with Urea at 50kg/ha on 4/8/00. Trial design: plants were sown in randomized blocks, block A was a measurement block of 1.8m x 33m and block B was a chemical treatment block of 1.8m x 21.5m. Both blocks had two replications. Both blocks included two generations of 'Clearfield WHT JNZ'. Measurements: taken from 10 specimens per replicate selected randomly from approximately 2000 plants. One sample per plant.

Prior Applications and Sales Nil.

Description: **Natalie Dyer**, Agriculture Western Australia, Wongan Hills, WA.

Table 41 Triticum varieties

	'Clearfield WHT JNZ'	*'Janz'
EAR GLAUCOSITY	medium-strong	medium
EAR: shape in profile	parallel-sided	tapering
AWN LENGTH (mm)		
mean	56.94	48.66
std deviation	2.07	4.48
LSD/sig	6.135	P≤0.01
LOWER GLUME – fro	m mid third of ear	
shoulder shape	sloping	elevated
beak length	medium	short - medium
internal hairs	medium	weak
LOWER LEMMA- from	n mid third of ear	
beak shape	straight	slightly curved
TOLERANCE TO IMI	DAZOLINONE BAS	SED HERBICIDE

'Clearfield WHT STL'

Application No: 2000/103 Accepted: 28 Mar 2000. Applicant: **The State of Western Australia through its department of agriculture called Agriculture Western Australia,** South Perth, WA.

tolerant

susceptible

Characteristics (Table 42, Figure 53) Plant: spring wheat, habit erect, height short (mean 71.03cm), maturity medium. Stem: pith thin. Flag leaf: tendency to be recurved absent, sheath glaucosity strong. Ear: density medium (node length 4.36cm), length medium (mean 8.88cm), shape in profile tapering, colour white, glaucosity medium to strong, awns present and medium (mean 5.6cm). Lower glume: shoulder width narrow to medium, shoulder shape elevated, internal hairs weak, glume beak length medium (mean 6.21mm), glume beak shape straight. Lemma: beak shape straight. Grain: colour white, hard, shape oval, germ face steep, width narrow, brush length medium, brush-end profile pointed. Herbicide Resistance: tolerant to imidazolinone based, MIDAS herbicide.

Origin and Breeding Controlled pollination: seed parent 'Stiletto'*3 x pollen parent 'Spear'/'Fidel' selection 2 in a planned breeding program. The seed parent is susceptible to the imidazolinone herbicide group. 'Clearfield WHT STL' is tolerant to the imidazolinone herbicide group. The final backcross was made in 1995 at Agriculture Western Australia, South Perth, WA. The breeding method used strategic backcrosses in conjunction with the F₂ progeny method. This variety was backcrossed three times and individual plants selected at each back cross for herbicide tolerance to imidazolinone. Selection criteria: tolerance to imidazolinone herbicide group. Propagation: by seed through selection and testing in small scale breeders trials and performance testing by Agriculture Western Australia's Crop Variety Testing Program in various regional locations in WA. Breeder: Dr. Iain Barclay, Agriculture Western Australia, South Perth, WA.

Choice of Comparators 'Stiletto' was chosen as a comparator because it is the recurrent seed parent of 'Clearfield WHT STL'. 'Spear' was chosen as a comparator because it constitutes part of the pedigree of the pollen parent 'Spear'/'Fidel' Selection 2. 'Fidel' was initially considered but was later excluded because it is red grained, long season variety.

Comparative Trial Location: Paddock 1EB, Wongan Hills Research Station, Agriculture Western Australia, Wongan Hills WA. Sown 6/7/00. Conditions: plants raised in sandy loam pH 4.65 in CaCl2 in open beds. Two blocks were sown, block A was a measurement block and block B was a chemical treatment block. Both blocks were treated with Sprayseed 250 ® at 2L/ha on 6/7/99 for weed control and Tilt 50Ec ® was sprayed at 0.5 l/ha for rust on 1/9/00. Block A was sprayed with Yield ® at 21/ha as a pre-emergent for rye grass on 6/7/00, Achieve ® at 380gm/ha as a postemergent for rye-grass on 31/7/00 and Jaguar ® at 0.75 l/ha for broadleaf control on 11/8/00. Block B was sprayed with MIDAS ® an imidazolinone based herbicide at various rates (3x recommended rate; recommended rate; 75% recommended rate & Nil) on 14/8/00 to show the distinct character for 'Clearfield WHT STL' of tolerance to imidazolinone compared to the comparators 'Stiletto' and 'Spear' which are not tolerant to imidazolinone. Agyield at 80kg/ha was drilled with the seed and both blocks were topdressed with Urea at 50kg/ha on 4/8/00. Trial design: plants were sown in randomized blocks, block A was a measurement block of 1.8m x 33m and block B was a chemical treatment block of 1.8m x 21.5m. Both blocks had two replications. Both blocks included two generations of 'Clearfield WHT STL'. Measurements: taken from 10 specimens per replicate selected randomly from approximately 2000 plants.

Prior Applications and Sales

First sold in Australia in Mar 2000.

Description: Natalie Dyer, Agriculture Western Australia, Wongan Hills, WA.

Table 42 Triticum varieties

	'Clearfield WHT STL'	*'Stiletto'	*'Spear'
PLANT GROW	ТН НАВІТ		
	erect	semi-erect	erect
EAR GLAUCO	SITY		
	medium -	strong	medium –
	strong		strong
EAR SHAPE I	N PROFILE		
	tapering	parallel- sided	tapering
EAR LENGTH	– excluding av	vns and scurs	(mm)
mean	88.09	81.47	84.23
std deviation	1.95	1.28	3.42
LSD/sig	3.94	P≤0.01	ns
LOWER GLUN	ME – from mid	third of ear	
shoulder width	narrow to medium	narrow to medium	broad

GRAIN - from mid third of ear

shape oval oval to oval to truncated truncated

TOLERANCE TO IMIDAZOLINONE BASED HERBICIDE tolerant susceptible susceptible

'K3057'

Application No: 2001/008 Accepted: 9 Feb 2001.

Applicant: Department of Agriculture for and on behalf of the State of New South Wales, Orange, NSW and Grains Research and Development Corporation, Barton, ACT.

Characteristics (Table 43, Figure 51) Plant: growth habit semi-erect to erect, height medium, straw pith thin. Flag leaf: glaucosity medium to-weak. Ear: emergence early to medium, glaucosity medium to strong, shape tapering, density lax to medium, colour white, awns at tip medium to long. Lower glume: shoulder width narrow to medium, shoulder shape elevated, beak shape slight curve, beak length long. Lowest lemma: beak shape straight. Grain colour: white. Seasonal type: spring.

Origin and Breeding Controlled pollination: parentage K1056/M3348//'Cook'///'Dollarbird'. F₁ seed was sown in 1987 and single head selections from the F₂ population were sown into single rows in 1990. F₄ observation plots were sown in 1991 and preliminary yield assessment was conducted in unreplicated trial plots in 1992. Stage 2 replicated trials were conducted in 1993 where the line showed good yield potential with acid soil tolerance. K3057 progressed through NSW Agriculture's advanced trials and was entered into stage 4 state wide evaluation trials in 1996. Grain samples from these trials were evaluated for grain quality where this lines weaker dough strength was identified as desirable. 'K3057' was tested at the Sydney University disease progress nursery in 1996 where resistance to the 3 rusts was identified. Large scale evaluation of grain quality was concluded in 1998 by the Uniform Quality Testing committee after which approval for release was granted. Selection criteria: high yield, resistance to stem rust, leaf rust, stripe rust, grain quality, acid soil tolerance. Propagation: seed. Breeder: Akram Khan, NSW Agriculture.

Choice of Comparators 'Dollarbird' as the pollen parent for the cross. 'Diamondbird' and 'Janz' were selected as commonly used varieties in the same agro-ecological region. 'Tailorbird' was not used as a comparator as there are significant yield and grain quality differences. 'Wylah', 'Sunbrook' and 'Whistler' were rejected for their winter habit as opposed to spring habit of K3057. 'Cunningham', 'H45' and 'Silverstar' have significant maturity and acid soil tolerance differences that exclude them from the comparator trial. The seed parent is an experimental breeding line and therefore was excluded.

Comparative Trial Location: sown on Temora Agricultural Research and Advisory Station, Barmedman Rd, Temora NSW. Conditions: sown into red clay soils on good moisture at 40kg/ha seeding rate with 100kg/ha of MAP. Trial design: randomised plots 6m x 1.42m in 2 replicates. Data collection: 10 specimens per replicate randomly selected from 1,750 plants per plot.

Prior Applications and Sale Nil.

Description: Paul Breust, NSW Agriculture, Temora, NSW.

Table 43 Triticum varieties

	'K3057'	*'Dollar- bird'	*'Diamond- bird'	*'Janz'
GROWTH HA	BIT			
	semi erect – erect	semi erect	semi erect – erect	semi erect
EAR EMERGI	ENCE			
	early – medium	medium – early	medium – early	early
FLAG LEAF (GLAUCOSI	TY		
	medium – weak	weak – medium	medium	medium
EAR GLAUCO	OSITY			
	medium – strong	medium	medium	medium- strong
EAR DENSIT	Y			
	lax – medium	lax – medium	lax – medium	medium – dense
AWNS OR SC	URS AT TI	P OF EAR		
	medium – long	medium	medium -long	long – medium
LOWER GLU	ME SHOUI	DER WID	ГН	
	narrow – medium	narrow – medium	narrow	narrow
LOWER GLU	ME SHOUI elevated	DER SHAI slightly sloping	slightly	elevated

'Kukri'

Application No: 2000/151 Accepted: 25 May 2000. Applicant: **Luminis Pty Ltd,** Adelaide, SA and **Grains Research and Development Corporation,** Barton, ACT.

Characteristics (Table 44, Figure 45) Plant: growth habit intermediate, height medium. Time of ear emergence: very early to early. Flag leaf: anthocyanin colouration of auricles strong, glaucosity weak. Ear: glaucosity weak, shape tapering, density lax, colour white, fully awned. Straw: pith thin. Apical rachis: hairiness medium. Lower glume: shoulder width medium, shoulder shape slightly elevated, beak length long, beak shape moderately curved. Grain: colour white, shape somewhat elongated, brush short. Coleoptile: short. Seasonal type: spring. Disease resistance: stem rust resistant (Sr2), leaf rust resistant, stripe rust moderately resistant, yellow leaf spot moderately resistant, crown rot moderately resistant, bunt very susceptible. Quality: glutenin bands a,b,d,d,h,b for Glu-A1, Glu-B1, Glu-D1, Glu-A3, Glu-B3 and Glu-D3 loci respectively, polyphenol oxidase activity low.

Origin and Breeding Controlled pollination: seed parent breeding line CO1213 x pollen parent breeding line RAC549 in a planned breeding program. The original cross was made in 1977 between lines in the Australian Elite

Crossing Nursery. The full pedigree is: DRP((FN-K58xN10B/Gb55)NAI60)/(TOB-CNO'S'xTOB-8156/CALxBb-CNO)/2/MDN/6*RAC177. Selection occurred at Roseworthy Agricultural College and further crosses were made, the last in 1987. Rust resistant F₂ plants were selected in the field at Castle Hill in 1988 and further single plant selection was carried out at Roseworthy in 1989 and 1990. A preliminary yield trial at Roseworthy in 1991 identified a line designated DT68570-117 as having potential and this was entered into replicated widescale yield trials across SA from 1994 to 2000 as RAC820, which was later released as 'Kukri'. Selection criteria: yield and adaptation, disease resistance and particularly potential Prime Hard quality. Propagation: by seed. Breeder: Gil Hollamby, Roseworthy Campus, The University of Adelaide, SA.

Choice of Comparators 'Barunga', 'Janz', 'Frame', 'Excalibur' and 'Krichauff' were chosen for the comparative trial, as these are similar fully awned varieties.

'Yitpi' was added as a comparator in the 2000 trial as this new release is also of similar phenotype. The parents were not included because these are non-commercial breeding lines.

Comparative Trials Location: Roseworthy Campus, Roseworthy, SA winter 1999 and again in winter 2000. Conditions: trials conducted in the field, sown at optimal time in a loamy mallee soil under normal farm practice of seeding rate and fertilisation, 1999 a dry season, 2000 above average but dry at heading. Trial design: randomised block design of 3 blocks, plots were 6 rows wide and 3.2m long, approximately 1000 plants per plot. Measurements: 5 plants per plot randomly selected, other measurements were taken from comparative yield trials sown at other sites.

Prior Applications and Sales

No prior applications. First sold in Australia in May 2000.

Description: Gil Hollamby, The University of Adelaide, Roseworthy Campus, Roseworthy, SA.

Table 44 Triticum varieties

	'Kukri'	*'Barunga'	*'Janz'	'Excalibur'	'Frame'	'Krichauff'	'Yitpi'
TIME OF EAR E	MERGENCE (D	ays from 31st Aug	g)				
mean	20.8	19.5	23.0	20.5	29.0	20.0	25.8
std deviation	0.4	0.7	0.7	0.7	0.0	1.4	0.7
LSD/sig	2.6	ns	P≤0.01	ns	P≤0.01	ns	P≤0.01
SPIKELET NUM	BER PER EAR	(Including Sterile	Basal Spikele	ets 2000)			
mean	22.9	19.8	22.3	20.7	21.9	19.8	21.3
std deviation	0.1	0.7	0.6	0.3	0.3	0.5	0.6
LSD/sig	1.1	P≤0.01	ns	P≤0.01	ns	P≤0.01	P≤0.01
BASAL STERILE	E SPIKELETS P	ER EAR (2000)					
mean	3.2	3.4	3.2	2.6	4.5	2.7	4.6
std deviation	0.2	0.9	0.9	0.7	0.8	0.1	0.3
LSD/sig	1.3	ns	ns	ns	P<0.01	ns	P<0.01
AURICLE ANTH	OCYANIN						
	strong	absent	absent	absent	absent	absent	absent
HIGH MOLECUI	LAR WEIGHT C	GLUTENIN BANI	OS (alleles at	Glu-A1, Glu-B1 a	and Glu-D1 lo	ci respect.)	
	abd	abd	aba	mixed	abd	acd	abd
LOW MOLECUL	AR WEIGHT G	LUTENIN BAND	OS (alleles at	Glu-A3, Glu-B3 a	nd Glu-D3 loc	i respect.)	
	dhb	cbc	bbb	mixed	chc	cba	chc
POLYPHENOL C	XIDASE ACTIV	/ITY					
	low	high	high	high	medium	low	medium

'M5631'

Application No: 2000/141 Accepted: 6 Nov 2000.

Applicant: Department of Agriculture for and on behalf of the State of New South Wales, Orange, NSW and Grains Research and Development Corporation, Barton, ACT.

Characteristics (Table 45, Figure 48) Plant: growth habit intermediate, height medium, straw pith thin, anthocyanin colouration of auricles absent. Flag leaf: glaucosity medium. Ear: emergence early to medium, glaucosity medium to weak, shape tapering, density medium to dense,

awns at tip medium length, colour white to brown. Lower glume: shoulder width narrow to medium, shoulder shape sloping, beak shape straight, extent of internal hairs medium. Grain: colour white. Seasonal type: winter.

Origin and Breeding Controlled pollination: parentage SR33/'Rosella'. Initial cross was made by the National Cereal Rust Control Program under direction from NSW Agriculture. The seed parent is a breeding line used to impart a high level of stem rust in 'Rosella'. Selection for rust resistance was made at the Plant Breeding Institute, The University of Sydney, Cobbitty. Pedigree selection for habit

and plant type was conducted for F_3 to F_6 generations by NSW Agriculture. Yield and small scale quality evaluation trials were conducted from 1991 to 1994 by NSW Agriculture. Wide scale regional yield experiments, by NSW Agriculture, were conducted from 1995-1998 to establish the yield and quality merits of the line. Selection criteria: disease resistance, growth habit, grain yield and quality. Propagation: seed. Breeder: NSW Agriculture.

Choice of Comparators 'Rosella' was chosen as the pollen parent for the cross. 'Sunsoft 98' is a commonly used Australian Soft White variety of similar growth habit. The winter habit biscuit wheats 'Bowie', 'Triller', 'Snipe' and 'Tatiara' were rejected because of significant differences in flour quality and rust resistances.

Comparative Trial Location: sown on Temora Agricultural Research and Advisory Station, Barmedman Rd, Temora NSW. Conditions: sown into red clay soils on good moisture at 40kg/ha seeding rate with 100kg/ha of MAP. Trial design: randomised plots 6m x 1.42m in 2 replicates. Data collection: 10 specimens per replicate randomly selected from 1,750 plants per plot.

Prior Applications and Sale

No prior application. First sold in Australia in May 2000.

Description: Paul Breust, NSW Agriculture, Temora, NSW.

Table 45 Triticum varieties

	'M5631'	*'Rosella'	*'Sunsoft 98'
GROWTH HA	BIT		
	intermediate	semi erect- intermediate	
FLAG LEAF A AURICLES	ANTHOCYANII	N COLOURAT	TON OF
	weak	absent	absent
EAR EMERGI	ENCE		
	early –	medium –	medium –
	medium	early	late
FLAG LEAF (GLAUCOSITY		
	medium	strong –	medium –
		medium	strong
EAR GLAUCO	OSITY		
	weak-	medium –	medium –
	medium	strong	weak
EAR DENSIT	Y		
	medium –	medium –	medium
	dense	dense	
AWNS AT TIP	OF EAR LENG	GTH	
	medium	medium	medium – long
EAR COLOUI			
	white -	white	white
	brown		
LOWER GLU	ME SHOULDE	R WIDTH	
	narrow –	absent -	medium
	medium	very narrow	

LOWER GLUN	ME SHOULDE slightly sloping	R SHAPE sloping	straight	
LOWER GLUN	ME BEAK LEN	IGTH		
	medium	medium	medium –	
			short	
LOWER GLUN	ME BEAK SHA	APE		
	straight	straight	slight curve	
LOWER GLUME EXTENT OF EXTERNAL HAIRS				
	medium	weak	weak	

'Mitre'

Application No: 2000/081 Accepted: 16 Mar 2000. Applicant: **Agriculture Victoria Services Pty Ltd,** Attwood, VIC and **Grains Research and Development Corporation,** Barton, ACT.

Characteristics (Table 46, Figure 46) Plant: semi-dwarf, spring wheat, habit erect, height medium to tall, maturity medium. Foliage: colour dark green (RHS 146A, 1995). Flag leaf: length medium, width wide, tendency to be recurved weak, auricle anthocyanin colouration absent, sheath glaucosity strong. Stem: straw pith thin to medium. Ear: glaucosity medium to weak, erect, parallel to slightly tapering, white, lax, fully awned. Lower glume: shoulder width narrow, shoulder shape elevated, internal hairs absent to weak; glume beak length long, slightly curved. Lemma: moderately curved. Grain: white, hard, ovate, germ face steep, width narrow, brush length short, end profile medium to pointed, Australian Hard (AH) or Australian Premium White (APW) grade. Disease Resistance: resistant to stem (Sr24) and moderately resistant to leaf (Lr24) and stripe rust. Resistant and moderately intolerant to Cereal Cyst Nematode (CCN), susceptible to Root Lesion Nematode P. thornei and P.neglectus. Moderately susceptible to susceptible to Septoria tritici. Moderately resistant to Flag smut. Susceptible to yellow leaf spot.

Origin and Breeding Controlled pollination: seed parent 'Janz' (3Ag3/4*Condor//Cook) x pollen parent 'Beulah' (Cook*2/Millewa//TM56). The original cross was made in 1990 at VIDA, Horsham, VIC, single plants selected in the F₂ and F₂ derived F₃ lines were evaluated for disease resistance and agronomic type. Single plant selections were taken in F₄, the F₅ multiplied in summer and the F₆-F₁₀ lines evaluated on the following selection criteria: grain yield, grain quality, stem, leaf & stripe rust resistance, resistance to CCN and agronomic adaptation to the wheat belt of south-eastern Australia. In F₉, 100 single spike selections were taken to ensure uniformity for disease resistance and agronomic characteristics, these were multiplied in summer and evaluated in 1998 for uniformity based on rust reaction, CCN resistance, high and low molecular weight glutenins and visual type. Of these, 47 lines were reconstituted as VK237R, which was released as 'Mitre'. 'Mitre' was tested in F₁₂-F₁₃ in various regional locations in southern NSW, SA and VIC from 1999 to 2000. Propagation: by seed. Breeder: Dr Peter Martin, Mr Tony O'Connor, Mr Robert Christie, Dr Russell Eastwood and staff of the wheat breeding program, Agriculture Victoria, Horsham, VIC.

Choice of Comparators The seed parent 'Janz' and the pollen parent 'Beulah' both were included in the trial as comparators. 'Janz' was chosen as a comparator because it is a semi-dwarf, white chaffed, fully awned spring wheat of medium maturity similar to the candidate. 'Beulah' was chosen as a comparator because it is also a semi dwarf, spring wheat of similar mature height to the candidate.

Comparative Trial Location: Wongamine, Avon Valley, sown on 26/6/00. Conditions: plants were in red loam pH 5.3 in CaCl₂ in open plots. The plots were treated with glyphosate on 24/06/00, Brodal at 150ml/ha on 22/07/99 was applied for radish control, no treatment for disease or insect control was required. Agras No 1 at 100 kg/ha was drilled with the seed and Urea at 80 kg/ha was topdressed at early tillering. Trial design: plants sown in randomised complete blocks, plot size 10m x 1.42m (8 rows) in 2 replications. Measurements: taken from 10 specimens per replicate selected randomly from approximately 2000 plants. One sample per plant.

Prior Applications and Sales

No prior applications. First sold in Australia in Dec 1999.

Description: David Collins, David Collins Consulting, Northam, WA.

Table 46 Triticum varieties

	'Mitre'	*'Beulah'	*'Janz'		
FLAG LEAF W	TDTH -at ear e	mergence (mm)		
mean	18.75	14.87	15.17		
std deviation	1.37	1.19	1.12		
LSD/sig	2.71	P≤0.01	P≤0.01		
DAYS TO EAR EMERGENCE					
mean	101.00	95.05	97.6		
std deviation	1.39	0.94	1.66		
LSD/sig	2.64	P≤0.01	P≤0.01		
MATURE HEIC	GHT – stem, ea	r & awns (mm))		
mean	770.35	737.35	724.05		
std deviation	41.7	43.8	34.8		
LSD/sig	42.3	ns	P≤0.01		
EAR GLAUCO	SITY				
	medium	medium	strong		
	to weak	to weak	-		
PRIMARY EAF	R LENGTH (m	m)			
mean	75.82	71.91	67.86		
std deviation	6.49	7.10	6.53		
LSD/sig	5.91	ns	P≤0.01		
AWN LENGTH	I – at tip of prir	mary ear (mm)			
mean	70.89	60.97	58.70		
std deviation	6.33	6.24	8.63		
LSD/sig	5.64	P≤0.01	P≤0.01		
STEM PITH					
	thin to medium	thin	thin		
	medium				
LOWER GLUM					
shoulder shape		elevated	elevated		
shoulder width medium	narrow	wide	narrow to		

GRAIN CHARACTERISTICS

shape ovate truncated ovate brush end profile medium to blunt medium

pointed

'Mulgara'

Application No: 2000/125 Accepted: 5 May 2000. Applicant: **Department of Agriculture for and on behalf of the State of New South Wales,** Orange, NSW

Characteristics (Table 47, Figure 49) Plant: growth habit semi-erect, height medium, straw pith thin. Flag leaf: glaucosity medium to strong. Ear: emergence early to medium, glaucosity medium to strong, shape tapering, density medium to dense, awns at tip long to medium, colour white. Lower glume: shoulder width medium, shoulder shape strongly elevated, beak shape straight, extent of internal hairs weak to medium. Grain: colour white. Seasonal type: spring.

Origin and Breeding Controlled pollination: parentage 'Hartog'/'Sunco'//3*'Sunco'. First controlled pollination in 1992. 'Hartog' was used as the donor parent (high osmoregulation) and 'Sunco' as the recurrent parent (low osmoregulation). Three backcrosses were performed in the glasshouse to the cultivar 'Sunco' using high osmoregulation as a selection criterion. After the last backcross, lines were self pollinated to produce an F₂ population containing homozygous individuals. This line is derived from one of these individual plants which was selected for high osmoregulation in 1995. It has been propagated by self pollination over three generations. Selection criteria: agronomic characteristics, disease resistance and quality traits. Propagation: seed. Breeder: Dr J. M. Morgan, NSW Agriculture.

Choice of Comparators 'Sunco' and 'Hartog' were the parents of 'Mulgara' and as such were chosen as comparators. 'Janz' was selected as a commonly used variety in the same agro-ecological region.

Comparative Trial Location: sown on Temora Agricultural Research and Advisory Station, Barmedman Rd, Temora NSW. Conditions: sown into red clay soils on good moisture at 40kg/ha seeding rate with 100kg/ha of MAP. Trial design: randomised plots 6m x 1.42m in 2 replicates. Data collection: 10 specimens per replicate randomly selected from 1,750 plants per plot.

Prior Applications and Sale

No prior application. First sold in Australia in May 2000.

Description: Paul Breust, NSW Agriculture, Temora, NSW.

Table 47 Triticum varieties

	'Mulgara	' *'Sunco'	*'Hartog'	*'Janz'
FLAG LEAF AURICLES	ANTHOCY	ANIN COL	OURATION	OF
	weak- medium	absent	absent	absent

FLAG LEAF (GLAUCOSI medium- strong		medium	medium	
EAR GLAUCO	OSITY				
	medium- strong	medium	medium	medium	
EAR DENSIT	Y				
	medium	medium	medium	lax-medium	
	to dense	to dense	to dense		
AWNS OR SC	URS AT TI	P OF EAR			
	long –	long –	medium -	long –	
	medium	medium	long	medium	
LOWER GLU	ME SHOUI	LDER WID	ТН		
	medium	narrow-	narrow-	narrow	
		medium	medium		
LOWER GLU	ME SHOUI	LDER SHA	PE		
	strongly	strongly	slightly	elevated	
	elevated	elevated	sloping		
LOWER GLU	ME BEAK	LENGTH			
	long	long	short	long	
LOWER GLUME BEAK SHAPE					
	straight	straight	straight	slight curve	
LOWER GLU	ME EXTEN	NT OF EXT	ERNAL HA	IRS	
	weak -	medium	weak	weak	
	medium				

'Strzelecki'

Application No: 1999/327 Accepted: 3 Mar 2000.

Applicant: The State of Queensland through

Applicant: The State of Queensland through its Department of Primary Industries, Brisbane, QLD and Grains Research and Development Corporation, Barton, ACT.

Characteristics (Table 48, Figure 52) Plant: spring wheat, habit semi-erect to intermediate during tillering, height medium, maturity medium. Stem: pith thin. Leaf: flag leaf strongly recurved, flag leaf ligule anthocyanin strong, flag leaf sheath glaucosity medium. Ear: density medium, length medium, shape in profile parallel, colour white, glaucosity weak to medium, awns present and medium. Floret: lower glume beak length short. Grain: white and hard. Disease resistance: resistance to yellow spot (*Pyrenophora triticirepentis*).

Origin and Breeding Controlled pollination: seed (non-recurrent) parent 'Vicam'x 4* pollen (recurrent) parent 'Batavia' in a planned breeding program with the final backcross in 1991. The selected BC_3F_4 line designated as QT7709, grown in 1995, comprised the progeny of a single BC_2F_3 plant. Five years of selection and/or evaluation, including field performance testing, milling, baking quality and disease resistance evaluation, and removal of off-types from QT7709 have occurred since 1995. QT7709 was renamed 'Strzelecki' in 2000. 'Strzelecki' was developed as a typically slow maturing winter-sown wheat well adapted to the northern wheat-growing region of Australia. Selection criteria: high yield, good agronomic

characteristics and high disease resistance with particular reference to yellow spot resistance, and desirable export quality. Propagation: seed produced by self-pollination through at least two generations. Breeder: P M Banks and R G Rees, Department of Primary Industries, Toowoomba, QLD.

Choice of Comparators The parents, 'Vicam' and 'Batavia' were chosen as comparators as these are the most similar varieties of common knowledge.

Comparative Trial Location: Wellcamp Farm, Wellcamp, Jondaryan shire, QLD, Jul – Nov 1999 and Jul – Nov 2000. Conditions: plants were raised in well fertilised, irrigated soil in open beds. Trial design: three-row plots of approximately 200 plants each variety, with two different seed sources (representing different generations) of 'Strzelecki', arranged in a randomised block with 5 (1999) or 10 (2000) replications. Metric measurements: taken from 5 specimens selected at random from each of five plots in the 2000 trial.

Prior Applications and Sales Nil.

Description: **Tony Done,** Leslie Research Centre, Department of Primary Industries, Toowoomba, OLD.

Table 48 Triticum varieties

	'Strzelecki'	*'Vicam'	*'Batavia'
AURICLE AN	THOCYANIN ((30/9/1999)	
	strong	absent or ve	ry weak
strong			
GROWTH STA	AGE (30/9/1999	, 3/10/2000)	
	50, 53	65, >69	50, 56
PLANT HEIG	HT (cm)		
mean	76	48	80
std deviation	5.3	2.9	2.3
LSD/sig	4.0	P≤0.01	ns
EAR INTERN	ODE LENGTH	– mean of six	x central internodes
of ear (mm)			
mean	4.4	4.1	4.8
std deviation	0.23	0.28	0.26
LSD/sig	0.22	P≤0.01	P≤0.01
EAR LENGTH	I -excluding aw	ns (mm)	
mean	101	84	109
std deviation	4.4	6.8	6.9
LSD/sig	5.7	P≤0.01	P≤0.01
EAR MATURI	TY COLOUR		
	white	coloured	white
LOWER GLU	ME BEAK LEN	NGTH (mm)	
mean	4	13	4
std deviation	0.6	3.6	0.8
LSD/sig	1.5	P≤0.01	ns
YELLOW SPO	OT RESISTANC	EE (seedling to	est)
	moderately resistant	resistant	susceptible

'Thornbill'

Application No: 2000/142 Accepted: 6 Nov 2000.

Applicant: Department of Agriculture for and on behalf of the State of New South Wales, Orange, NSW and Grains Research and Development Corporation, Barton, ACT.

Characteristics (Table 49, Figure 50) Plant: growth habit intermediate, height medium, straw pith thin, anthocyanin colouration of auricles weak. Flag leaf glaucosity medium to weak. Ear: emergence medium, glaucosity weak to medium, shape tapering, density medium to dense, awns at tip medium to long, colour dark brown. Lower glume: shoulder width very narrow, shoulder shape sloping, beak shape straight, extent of internal hairs medium. Grain colour: white, Seasonal type: winter.

Origin and Breeding Controlled pollination: parentage Lr21,Sr X/ M3087. Initial cross was made by National Cereal Rust Control Program under direction from NSW Agriculture. The seed parent is a breeding line used to impart a high level of stem and leaf rust in M3087. Selection for rust resistance was made at the Plant Breeding Institute, The University of Sydney, Cobbitty. Pedigree selection for habit and plant type was conducted for F₃ to F₆ generations by NSW Agriculture. Yield and small scale quality evaluation trials were conducted from 1991 to 1994 by NSW Agriculture. Wide scale regional yield experiments, by NSW Agriculture, were conducted from 1995-1998 to establish the yield and quality merits of the line. Selection criteria: disease resistance, growth habit, grain yield and quality. Propagation: seed. Breeder: NSW Agriculture.

Choice of Comparators 'M3087' was included as it is the pollen parent. 'Rosella' was included as it is a sister line to the pollen parent and is commonly grown within the industry. 'Triller' is another commonly used variety for the production of biscuit wheat and was also included. 'Snipe' another commonly used biscuit wheat was not used because it is awnless as opposed to 'Thornbill' which is awned. The seed parent is an experimental breeding line and therefore was excluded.

Comparative Trial Location: sown on Temora Agricultural Research and Advisory Station, Barmedman Rd, Temora NSW. Conditions: sown into red clay soils on good moisture at 40kg/ha seeding rate with 100kg/ha of MAP. Trial design: randomised plots 6m x 1.42m in 2 replicates. Data collection: 10 specimens per replicate randomly selected from 1,750 plants per plot.

Prior Applications and Sale

No prior application. First sold in Australia in May 2000.

Description: Paul Breust, NSW Agriculture, Temora, NSW.

Table 49 Triticum varieties

	'Thornbill	'*'M3087'	*'Rosella'	*'Triller'
GROWTH HA	ABIT			
	interm-	semi –	semi –	interm-
	ediate	erect-	erect-	ediate
FLAG LEAF AURICLES	ANTHOCY	ANIN COL	OURATION	OF
	weak	absent	absent	strong – very strong
EAR EMERC	SENCE			
	medium –	medium -	medium –	medium –
	late	early	late	late
FLAG LEAF	GLAUCOSI	TY		
	medium –	medium -	strong -	medium –
	weak	weak	medium	weak
EAR GLAUC	OSITY			
	weak -	medium	medium	medium -
	medium			weak
EAR DENSIT	ΓΥ			
	medium –	medium -		lax-medium
	dense	dense	dense	
AWNS AT TI	P OF EAR L	ENGTH		
	medium –	long –	medium –	short -
	long	medium	short	medium
EAR COLOU	JR			
	dark	white	white	white
	brown			
LOWER GLU	JME SHOUI	LDER WID	TH	
		absent -		narrow
	very	absent –	narrow	nanow
	narrow	very	narrow	nurrow
	•		narrow	narrow
_ LOWER GLU	narrow	very narrow		narow
	narrow	very narrow LDER SHA	PE	
	narrow JME SHOUI	very narrow LDER SHA	PE	
	narrow JME SHOUI sloping	very narrow LDER SHA slightly sloping	PE slightly	
	narrow JME SHOUI sloping	very narrow LDER SHA slightly sloping LENGTH	PE slightly	straight
	narrow UME SHOUI sloping UME BEAK	very narrow LDER SHA slightly sloping LENGTH	PE slightly sloping	straight
LOWER GLU	narrow UME SHOUI sloping UME BEAK medium	very narrow DER SHA slightly sloping LENGTH medium – short	PE slightly sloping medium –	straight
LOWER GLU LOWER GLU LOWER GLU	narrow UME SHOUI sloping UME BEAK medium	very narrow DER SHA slightly sloping LENGTH medium – short SHAPE	PE slightly sloping medium – short	straight
LOWER GLU	narrow JME SHOUI sloping JME BEAK medium JME BEAK	very narrow DER SHA slightly sloping LENGTH medium – short	PE slightly sloping medium –	straight n/a
LOWER GLU	narrow UME SHOUI sloping UME BEAK medium UME BEAK straight	DER SHA slightly sloping LENGTH medium – short SHAPE slight curve	PE slightly sloping medium – short straight	straight n/a slight curve

Verticordia plumosa x Chamelaucium uncinatum **Waxflower hybrid**

'Jasper'

Application No. 1997/137 Accepted: 19 Jun 1997.

Applicant: The State of Western Australia through its department of agriculture called Agriculture Western Australia, South Perth, WA.

Characteristics (Table 50, Figure 18) Plant: short-medium, erect, bushy. Stem: thickness medium, branch angle small, internode length short. Leaf: length small-medium, thickness small-medium, angle small, apex acute. Flowering time: late. Flower: arrangement narrow distal, density dense, diameter small. Bud: main colour with cap red (RHS 47B), without cap deep purple (RHS 75A). Petal: colour first opened deep purple (RHS 75A), at mid-maturity purple (RHS 75B). Flower nectary: colour first opened greyed orange (RHS 170B), at mid-maturity greyed purple (RHS 186A). Staminodia: outline very narrow triangular, numerous, very long, curve inwards to style. Calyx lobe: colour purple (RHS 75D). Calyx tube: longitudinal furrowing absent, outline conical-flared, mid-point colour greyed red (RHS 180A), diameter small. (Note: all RHS colour chart numbers refer to 1986 edition.)

Origin and Breeding Single hybrid plant selection: from open pollination of *Verticordia plumosa* and *Chamelaucium uncinatum* at Halls Head, Western Australia. Selected at Halls Head in Jun 1994. After a series of propagation trials, plants were produced from the seedling in 1995 and 1996. All plants were found to be uniform and stable. Subsequent cutting propagated generations were produced in 1997. The parentage was confirmed by DNA fingerprinting in 2000[†]. Selection criteria: small purple flowers, dense terminal flowering heads, erect growth. Propagation: cutting. Breeder: Agriculture Western Australia.

Choice of Comparators 'Eric John' was considered as the most similar variety of common knowledge on the basis of flower colour. DNA fingerprinting has also shown 'Eric John' to be a hybrid between *V. plumosa* and *C. uncinatum*. The parents were not considered for the trial because 'Jasper' is clearly distinguishable from *V. plumosa* because it lacks the blue-grey leaf colour, has no feathered petals, has more purple flowers and is more vigorous. 'Jasper' is clearly distinguishable from *C. uncinatum* as it is erect, has terminal flowers and has numerous long staminodia giving a ciliated appearance.

Comparative Trial Location: Agriculture Western Australia Research Station, Medina, WA. Conditions: plants propagated by cuttings and planted in open field of sandy soil with drip irrigation and fertigation. Trial design: 15 plants of each variety, replicated randomised block design. Measurements: made on 20 typical organs from all plants.

Prior Applications and Sales Nil.

Description: **Philip Watkins**, Sunglow Flowers Pty Ltd, Perth, WA and **Digby Growns**, Agriculture WA, Geraldton, WA.

[†] **Additional Information** Previously one of the putative parents was thought to be *C. floriferum*. However, DNA fingerprinting identified the parentage as *Verticordia plumosa* × *Chamelaucium uncinatum*.

Table 50 Verticordia x Chamelaucium varieties

Table 00 Vertioorala	TX Onamelaucit	
	'Jasper'	*'Eric John'
BRANCH ANGLE (degree	ee)	
mean	24.7	41.1
std deviation	0.65	1.89
LSD/sig	1.04	P≤0.01
INTERNODE LENGTH	(mm) Main stem 100	Omm from
terminal		
mean	10.75	19.20
std deviation	0.85	2.17
LSD/sig	1.21	P≤0.01
LEAF LENGTH (mm)		
mean	12.6	9.00
std deviation	0.82	0.73
LSD/sig	0.57	P≤0.01
LEAF ANGLE (degree)		
mean	12.9	7.15
std deviation	1.37	0.67
LSD/sig	0.80	P≤0.01
FIRST FLOWERING (da	te)	
TIKST TEOWERING (da	8-Sep	20-Aug
	Late	Mid
	Late	Wild
FLOWER DENSITY		
	dense	sparse-medium
BUD COLOUR WITHOU	JT CAP (RHS, 1986	5)
	75A	81D
	deep purple	purple violet
PETAL COLOUR AT FIR	RST OPENING (RH	S, 1986)
	75A	75C
	deep purple	purple
PETAL COLOUR AT MI	D-MATURITY (RH	(S, 1986)
	75B	75D
	purple	pale purple
NECTARY COLOUR AT	FIRST OPENING	(RHS, 1986)
	170B	168B
	greyed	greyed
	orange	orange
NECTARY COLOUR AT	MID-MATURITY	(RHS, 1986)
I ZOLOGIANI	186A	179A
	greyed	greyed
	purple	red
STAMINODIA OUTLIN	 F.	
5 I IVIII (ODIA OUILII)	very narrow	narrow
	triangular,	triangular
	numerous, very	
	long & curve	
	inwards to style	
	III wards to style	

CALYX LOBE COLOU	R (RHS, 1986) 75D purple	82D purple violet
CALYX TUBE OUTLIN	NE	
	conical-flared	conical
CALYX TUBE MID-PO	INT COLOUR (RH	IS, 1986)
	180A	59A
	greyed red	red purple
CALYX TUBE DIAME	TER (mm)	
mean	4.27	3.58
std deviation	0.10	0.09
LSD/sig	0.072	P≤0.01

Vicia faba Field Bean

'Deep Purple'

Application No: 1998/198 Accepted: 14 Oct 1998. Applicant: **Mannalea Nominees Pty Ltd,** Grass Valley, WA.

Characteristics (Table 51, Figure 43) Plant: habit erect, height medium, maturity early. Stem: anthocyanin colouration absent. Foliage: colour bluish green, intensity medium, length short to medium, width narrow to medium, folding weak. Raceme: number of flowers at 2nd fertile node medium (mean 4.98). Flower: length short to medium, wing; melanin spot present, standard; melanin spot absent, anthocyanin colouration present, intensity slight. Truss: number of pods few (mean at 2nd fertile node 1.3). Pod: attitude erect, length short to medium, width medium, degree of curvature absent or slight, thickness of pod wall thin. Seed: shape of median longitudinal section square, shape of cross section elliptic, testa colour mid to dark violet, hilum colour black. Disease resistance: susceptible to *Ascocyhta* and chocolate spot.

Origin and Breeding Recurrent phenotypic selection: seven seeds were selected from the variety 'Fiord' in 1994 for purple testa colour. Further selections were made from 1995 to 1997 for testa colour and plant type. In each selection cycle, removing approximately 2% of seeds with green seed colour. 'Deep Purple' was included in variety evaluation trials conducted by Agriculture Western Australia from 1996 to 1999 where it consistently outyielded its parent, 'Fiord'. 'Deep Purple has also been evaluated in trials in SA and VIC. The variety was bulked-up in isolation in the Avon Valley, WA. Selection criteria: seed yield, seed testa colour, disease resistance and adaptation to the agricultural regions of WA. Propagation: by seed. Breeder: Angie Roe, Northam, WA.

Choice of Comparators 'Fiord' was chosen as a comparator because it has similar maturity to the candidate. 'Fiord' is the seed parent of the candidate. 'Ascot VF' (b) was chosen as a comparator because it is a recent selection from 'Fiord' with similar maturity.

Comparative Trial Location: Wongamine, Avon Valley, sown 26 Jun 2000. Conditions: plants were in red loam pH 5.3 in CaCl₂ in open plots. The plots were treated with

glyphosate on 24 Jun 2000, Fusilade at 150 ml/ha on 22 Jul 1999 was applied for wild oat control, no treatment for disease or insect control was required. Agras No 1 at 100 kg/ha was drilled with the seed. Due to the lack of finishing rains the trial was irrigated in Oct to ensure seed set. Trial design: plants sown in randomised complete blocks, plot size 10m x 1.42m (8 rows) in 2 replications. Measurements: taken from 10 specimens per replicate selected randomly from approximately 2000 plants. One sample per plant.

Prior Applications and Sales Nil.

Description: David Collins, David Collins Consulting, Northam, WA.

Table 51 Vicia varieties

	'Deep Purple'	*'Fiord'	*'Ascot VF'
LEAFLET LE	NGTH – basal 1	pair of leaflets	s (mm)
mean	42.87	51.94	42.76
std deviation	4.27	6.41	4.85
LSD/sig	5.14	P≤0.01	ns
LEAFLET WI	DTH – basal pa	ir of leaflets ((mm)
mean	24.29	28.38	24.93
std deviation	3.17	4.48	2.97
LSD/sig	3.95	P≤0.01	ns
MATURE HEI	GHT (mm)		
mean	341.38	373.25	262.25
std deviation	37.94	44.52	22.15
LSD/sig	28.71	P≤0.01	P≤0.01
HEIGHT OF F	TRST POD – at	t maturity (mi	n)
mean	180.50	192.00	133.75
std deviation	17.79	24.03	21.27
LSD/sig	17.4	ns	P≤0.01
POD LENGTH	I – at 2nd fertile	e node (mm)	
mean	51.75	50.27	43.78
std deviation	5.43	5.76	4.19
LSD/sig	5.25	ns	P≤0.01
SEED TESTA	COLOUR		
	mid to dark violet	beige	green to beige

Vitis vinifera
Grape

'BW 41/5'

Application No: 1996/018 Accepted: 13 Feb 1996. Applicant: **Andriske Table Grapes Pty Ltd,** Paringi, NSW.

Characteristics (Table 52, Figure 26) Shoot: medium to strong vigour, half opened to opened tip, overall distribution of anthocyanin colouration of tip, strong in intensity, no prostrate or erect hairs on tip, shoot attitude erect during flowering. Tendrils: long and continuous along shoot. Flower: hermaphrodite. Mature leaf: large, pentagonal, five lobes, dark green in colour, weak blistering on upper surface of blade, teeth rectilinear and medium in size, sinus very open, V shaped, no anthocyanin colour on main veins, no prostrate or erect hairs on or between the veins on the

lower side, no hairs on petiole. Bunches: very large, loose, peduncle long with weak lignification. Berry: very large, obtuse ovate to short elliptic with circular cross section, green yellow skin, medium bloom, berry skin thick, flesh not coloured, slight muscat flavour, seeded berry, separation from pedicel medium to difficult.

Origin and Breeding Controlled pollination: Seed parent 'Red Globe' x pollen parent 'Menindee Seedless'. The seed parent is characterised by large firm seeded fruit, mid to late maturing. The pollen parent is a white variety. Mature seeds were recovered and propagated to seedling stage by a commercial nursery and transplanted to field plots for ongrowing and evaluation. Propagation: multiplication by cuttings. Breeder: Stanley Andriske (now deceased) carried out breeding on Farm 3 Paringi NSW 2738 prior to his death in December 1991.

Choice of Comparators 'Italia' and 'Calmeria' were chosen as comparators. 'Italia' is a white seeded grape with a muscat flavour. 'Calmeria' is also a white seeded grape that matures late in the season. These white seeded varieties were considered to be closest varieties of common knowledge. The seed parent 'Red Globe' was not chosen as a comparator as it is a red variety. The pollen parent 'Menindee Seedless' was not chosen as a comparator as it is a seedless variety.

Comparative Trial Location: Farm 3 Paringi, NSW (Latitude 34° South), trial planted in winter 1996. Conditions: trial conducted in the field within existing vineyard plantings, vines propagated from cutting in a nursery, planted into trial site, irrigation, nutrition and pest and disease treatments in-line with standard vineyard practices, no bunch trimming or thinning carried out, no GA applied. Vines trained onto large V trellis. Trial design: three-vine panels of each variety, arranged in a randomised block design replicated five times. Measurements: from five vines of each variety, taken over 3 seasons, 1998/99, 1999/2000, 2000/01.

Prior Applications and Sales Nil.

Description: **Garth Swinburn**, Scholefield Robinson Horticultural Services Pty Ltd, Mildura, VIC.

Table 52 Vitis varieties

	'BW 41/5'	*'Italia'	*'Calmeria'
BUNCH WID			
mean	13.5	12.4	11.6
std deviation	2.5	1.7	1.6
LSD/sig	1.9	ns	P≤0.01
BERRY LENC	TH (mm)		
mean	31	27	24
std deviation	3	3	2
LSD/sig	2.0	P≤0.01	P≤0.01
BERRY WIDT	H (mm)		
mean	26	21	16
std deviation	1	3	1
LSD/sig	1.0	P≤0.01	P≤0.01

YOUNG SHOO Distribution of a		ERISTICS			
	overall	piping	overall		
Intensity of anth	ocyanin				
	strong	very weak	weak		
Prostrate hairs on tip					
	none	none	medium		
Erect hairs on tij	p				
	none	none	sparse		
MATURE LEAF	CHARACTE	RISTICS			
Blistering on up		ras i i cs			
Bristering on up	weak	medium	weak		
Shape of petiole		1110010111	··· cuit		
	very open	open	open		
Shape of petiole	- I				
	V-shaped	U-shaped	V-shaped		
Anthocyanin on		1	1		
•	absent	weak	absent		
Prostrate hairs b	etween veins				
	none	dense	none		
Prostrate hairs o	n veins				
	none	medium	none		
BUNCH CHAR	ACTERISTICS				
Size	very large	medium	medium		
Density	loose	medium	medium		
		loose	loose		
Length of pedun	cle				
0 1	long	long	medium		
BERRY CHARA					
Size	very large	medium-large			
Shape	obtuse ovate	short elliptic	elliptic to		
	to short	to cylindrical	cylindrical		
	elliptic				
Bloom	medium	medium – strong	strong		
Skin thickness	thick	medium	very thick		
Flavour	slight muscat	muscat	none		
Separation from pedicel					
	medium- difficult	difficult	difficult		

'HBS 17-35'

Application No: 1996/046 Accepted: 1 Apr 1996. Applicant: **Andriske Table Grapes Pty Ltd,** Paringi, NSW.

Characteristics (Table 53, Figure 27) Shoot: medium to strong vigour, half opened to opened tip, overall distribution of anthocyanin colouration of tip, weak in intensity, no prostrate or erect hairs on tip, shoot attitude erect during flowering. Tendrils: long and continuous along shoot. Flower: hermaphrodite. Mature leaf: large, pentagonal, five lobes, dark green in colour, weak blistering on upper surface of blade, teeth rectilinear and medium in size, sinus very open, U shaped, no anthocyanin colour on main veins, no prostrate or erect hairs on or between the veins on the lower side, no hairs on petiole. Bunches: large, loose, peduncle medium length and medium lignification. Berry: large, roundish with circular cross section, green yellow skin, medium to strong bloom, berry skin thin, flesh not coloured, no particular flavour, seedless berry, separation from pedicel medium to difficult.

Origin and Breeding Controlled pollination: Seed parent 'Red Globe' x pollen parent 'Menindee Seedless'. The seed parent is characterised by large firm fruit, mid to late maturing. The pollen parent is white and seedless. Mature seeds were recovered and propagated to seedling stage by a commercial nursery and transplanted to field plots for ongrowing and evaluation. Propagation: multiplication by cuttings. Breeder: Stanley Andriske (now deceased) carried out breeding on Farm 3 Paringi, NSW prior to his death in Dec 1991.

Choice of Comparators 'Centennial' and 'Menindee Seedless' were chosen as comparators. 'Menindee Seedless' is a white seedless grape and the pollen parent of the candidate. 'Centennial' is also a white seedless grape. These white seedless varieties were considered to be closest varieties of common knowledge. The seed parent 'Red Globe' was not chosen as a comparator as it is a red seeded variety.

Comparative Trial Location: Farm 3 Paringi, NSW (Latitude 34° South), trial planted in winter 1996. Conditions: trial conducted in the field within existing vineyard plantings, vines propagated from cutting in a nursery, planted into trial site, irrigation, nutrition and pest and disease treatments in-line with standard vineyard practices, no bunch trimming or thinning carried out, no GA applied. Vines trained onto large V trellis. Trial design: three-vine panels of each variety, arranged in a randomised block design replicated five times. Measurements: from five vines of each variety, taken over 3 seasons, 1998/99, 1999/2000, 2000/01.

Prior Applications and Sales Nil.

Description: **Garth Swinburn,** Scholefield Robinson Horticultural Services Pty Ltd, Mildura, VIC.

Table 53 Vitis varieties

'HBS 17-35'	*'Centennial'	*'Menindee Seedless'
TH (cm)		
16.7	19.8	17.7
2.8	2.8	2.5
2.6	P≤0.01	ns
ΓH (mm)		
23	26	24
3	2	2
2.0	P≤0.01	ns
H (mm)		
22	15	18
2	1	1
1.0	P≤0.01	P≤0.01
	ERISTICS	
•		
weak	strong	medium
F CHARACTE	RISTICS	
large	very large	medium – large
medium	medium	short – medium
medium	medium	short
	TH (cm) 16.7 2.8 2.6 TH (mm) 23 3 2.0 H (mm) 22 1.0 T CHARACTH ocyanin weak F CHARACTE large medium	TH (cm) 16.7

Shape of petiole	e sinus					
	very open	very open	slightly open			
Shape of petiole	e sinus base					
	U-shaped	U-shaped	V-shaped			
Anthocyanin on	veins (upper)					
•	absent	weak	absent			
						
BUNCH CHAR	RACTERISTIC	S				
Size	medium -	medium	medium			
	large					
Density	loose	very loose	medium			
Length of pedui	Length of peduncle					
	medium	short	medium			
Lignification of	peduncle					
	medium	strong	weak			
BERRY CHAR	ACTERISTICS	S				
Size	large	small	medium			
Shape	roundish	long elliptic	short elliptic			
Bloom	medium -	medium -	medium			
	strong	strong				
Skin thickness	thin	medium	medium			
Separation from	Separation from pedicel					
•	difficult	easy	easy-medium			
	difficult	casy	casy-incurum			

GRANTS

Agapanthus praecox subsp orientalis Agapanthus

'Silver Sword'

Application No: 1999/214 Grantee: **Janet and Mark Lamble**, Berry, NSW.

Certificate No: 1655 Expiry Date: 7 February, 2021.

Argyranthemum frutescens Marguerite Daisy

'Summer Melody'

Application No: 1997/190 Grantee: **The University of Sydney**, Camperdown, NSW and **Protected Plant Promotions Australia Pty Ltd**, Macquarie Fields, NSW. Certificate No: 1709 Expiry Date: 19 March, 2021.

'Summer Stars'

Application No: 1998/051 Grantee: **The University of Sydney**, Camperdown, NSW and **Protected Plant Promotions Australia Pty Ltd**, Macquarie Fields, NSW. Certificate No: 1710 Expiry Date: 19 March, 2021.

Avena sativa Oats

'Targa'

Application No: 1999/218 Grantee: University of Tasmania, Hobart, TAS and The Crown in Right of the State of Tasmania through the Department of Primary Industries, Water and Environment, Kings Meadows, TAS.

Certificate No: 1660 Expiry Date: 8 February, 2021.

Barleria cristata Philippine Violet

'Jetstreak'

Application No: 2000/055 Grantee: **Hilder's Nursery**, Upper Stone via Ingham, OLD.

Certificate No: 1707 Expiry Date: 19 March, 2021.

Bougainvillea hybrid Bougainvillea

'Jazzi'

Application No: 1999/059 Grantee: **Jan and Peter Iredell**, Moggill, QLD.

Certificate No: 1677 Expiry Date: 22 February, 2021.

'.Iellibene'

Application No: 1999/087 Grantee: **Jan and Peter Iredell**, Moggill, QLD.

Certificate No: 1672 Expiry Date: 22 February, 2021.

'Marlu'

Application No: 1999/084 Grantee: **Jan and Peter Iredell**, Moggill, OLD.

Certificate No: 1675 Expiry Date: 22 February, 2021.

'Siggi'

Application No: 1999/083 Grantee: **Jan and Peter Iredell**, Moggill, OLD.

Certificate No: 1676 Expiry Date: 22 February, 2021.

'Toffi'

Application No: 1999/086 Grantee: **Jan and Peter Iredell**, Moggill, OLD.

Certificate No: 1673 Expiry Date: 22 February, 2021.

'Tosca'

Application No: 1999/085 Grantee: Jan and Peter Iredell,

Moggill, QLD.

Certificate No: 1674 Expiry Date: 22 February, 2021.

Bracteantha bracteata Everlasting Daisy, Strawflower

'Coolgardie Gold'(D) Application No: 1999/021 Grantee: **Redlands Nursery Pty**

Ltd, Redland Bay, QLD.

Certificate No: 1701 Expiry Date: 15 March, 2021.

Brassica napus var oleifera

Canola

'47C02'

Application No: 1998/229 Grantee: **Pioneer Hi-Bred International Inc**.

Certificate No: 1653 Expiry Date: 6 February, 2021. Agent: **Pioneer Hi-Bred Australia Pty Ltd**, Toowoomba,

QĽD.

Codiaeum variegatum Variegated Croton

'Grubell' syn Bell

Application No: 1998/045 Grantee: **Andre de Gruyter BV**. Certificate No: 1700 Expiry Date: 9 March, 2021.

Agent: Futura Promotions Pty Ltd, Wellington Point, QLD.

Cuphea hyssopifolia False Feather

'Karissa'

Application No: 1999/003 Grantee: **Carolynn Milne**, Alexandra Hills, QLD.

Certificate No: 1683 Expiry Date: 26 February, 2021.

'Little Hatter'

Application No: 1998/130 Grantee: **H Eunice Nursery Inc**.

Certificate No: 1682 Expiry Date: 26 February, 2021. Agent: **Futura Promotions Pty Ltd**, Wellington Point, QLD.

'Lois'

Application No: 2000/112 Grantee: **Carolynn Milne**, Alexandra Hills, QLD.

Certificate No: 1681 Expiry Date: 26 February, 2021.

'Shona'

Application No: 1999/004 Grantee: Carolynn Milne, Alexandra Hills, OLD.

Certificate No: 1684 Expiry Date: 26 February, 2021.

'Victoria'

Application No: 1999/337 Grantee: Carolynn Milne,

Alexandra Hills, QLD.

Certificate No: 1685 Expiry Date: 26 February, 2021.

Dianthus hybrid **Pink**

'Codianki'

Application No: 1999/153 Grantee: **The University of Sydney**, Camperdown, NSW.

Certificate No: 1693 Expiry Date: 27 February, 2021.

Diascia hybrid **Twinspur**

'Codiach'

Application No: 1999/155 Grantee: **The University of Sydney**, Camperdown, NSW.

Certificate No: 1688 Expiry Date: 26 February, 2021.

'Codiape'

Application No: 1999/154 Grantee: **The University of Sydney**, Camperdown, NSW.

Certificate No: 1687 Expiry Date: 26 February, 2021.

Festuca arundinacea

Tall Fescue

'Fravdo'

Application No: 1998/182 Grantee: Agriculture Victoria Services Ptv Ltd, Attwood, VIC.

Certificate No: 1654 Expiry Date: 7 February, 2021.

'Resolute'

Application No: 1998/131 Grantee: Wrightson Seeds Limited.

Certificate No: 1704 Expiry Date: 19 March, 2021. Agent: **Wrightson Seeds (Aust) Pty Ltd**, Ballarat, VIC.

Ficus benjamina Weeping Fig

'Baft' syn Bushy Prince

Application No: 1999/342 Grantee: Gebr. W. van der Knaap.

Certificate No: 1690 Expiry Date: 27 February, 2026.
Agent: **Futura Promotions Pty Ltd**, Wellington Point, OLD

'Vivian' syn Indigo

Application No: 1997/088 Grantee: **Plantenkwekerij** J. van Geest B.V.

Certificate No: 1691 Expiry Date: 27 February, 2026. Agent: **Futura Promotions Pty Ltd**, Wellington Point, OLD.

Ficus elastica

India Rubber Tree

'Melany'

Application No: 1999/149 Grantee: Plantenkwekerij J. van Geest B.V.

Certificate No: 1669 Expiry Date: 22 February, 2021. Agent: **Futura Promotions Pty Ltd**, Wellington Point, QLD.

Impatiens hybrid Impatiens

'Celdered' syn Celebration Deep Red

Application No: 1998/007 Grantee: **Ball FloraPlant – A Division of Ball Horticultural Company**.

Certificate No: 1668 Expiry Date: 22 February, 2021. Agent: **Oasis Horticulture Pty Ltd**, Winmalee, NSW.

Impatiens walleriana

Busy Lizzie

'Codimpca'

Application No: 1999/157 Grantee: **The University of Sydney**, Camperdown, NSW.

Certificate No: 1686 Expiry Date: 26 February, 2021.

Lavandula hybrid Lavender

'Silver Feather'

Application No: 1996/265 Grantee: **The University of Sydney**, Camperdown, NSW and **Protected Plant Promotions Australia Pty Ltd**, Macquarie Fields, NSW. Certificate No: 1689 Expiry Date: 27 February, 2021.

Leucadendron hybrid Leucodendron

'Corringle Gold'

Application No: 1999/072 Grantee: Corringle Proteas Pty Ltd.

Certificate No: 1713 Expiry Date: 21 March, 2021. Agent: **Proteaflora Nursery Pty Ltd**, Monbulk, VIC.

Lolium multiflorum Italian Ryegrass

'Dargle'

Application No: 1997/032 Grantee: Range and Forage Institute.

Certificate No: 1698 Expiry Date: 9 March, 2021. Agent: **Pacific Seeds Pty Ltd**, Towoomba, QLD.

Lolium perenne Perennial Ryegrass

'Quartet'

Application No: 1998/136 Grantee: Wrightson Seeds Limited.

Certificate No: 1705 Expiry Date: 19 March, 2021. Agent: **Wrightson Seeds (Aust) Pty Ltd**, Ballarat, VIC.

Malus domestica Apple

'Lochbuie Red Braeburn'

Application No: 1997/114 Grantee: **William Turner**. Certificate No: 1708 Expiry Date: 19 March, 2026. Agent: **Spruson and Ferguson**, Sydney, NSW.

Medicago sativa Lucerne

'Rapide'

Application No: 1997/294 Grantee: **Seedco Australia Cooperative Limited**, Hilton, SA.

Certificate No: 1703 Expiry Date: 19 March, 2021.

'Salado'

Application No: 1998/112 Grantee: **AgriPro Seeds, Inc. USA**.

Certificate No: 1697 Expiry Date: 5 March, 2021. Agent: **SGB Australia Pty Ltd**, Melbourne, VIC.

'UOL-1'

Application No: 1999/073 Grantee: **The University of Oueensland**. Brisbane. OLD.

Certificate No: 1699 Expiry Date: 9 March, 2021.

Medicago truncatula Barrel Medic

'Jester'

Application No: 1998/201 Grantee: **Minister for Primary Industries and Resources**, Adelaide, SA.

Certificate No: 1706 Expiry Date: 19 March, 2021.

Olearia axillaris Olearia

'Little Smokie'

Application No: 1999/069 Grantee: **George A Lullfitz**, Wanneroo, WA.

Certificate No: 1667 Expiry Date: 22 February, 2021.

Pelargonium peltatum Ivy Pelargonium

'Pentom' syn Tomboy2

Application No: 1997/322 Grantee: Elsner pac Jungpflanzen.

Certificate No: 1671 Expiry Date: 22 February, 2021.

Agent: **Geranium Cottage Nursery**, Round Corner, NSW.

'Penvel' syn Velvet2

Application No: 1997/323 Grantee: **Elsner pac Jungpflanzen**.

Certificate No: 1670 Expiry Date: 22 February, 2021. Agent: **Geranium Cottage Nursery**, Round Corner, NSW.

Pisum sativum Field Pea

'Morgan PSE 23'

Application No: 1999/191 Grantee: **Department of Agriculture for and on behalf of the State of New South Wales** and **Grains Research and Development Corporation**.

Certificate No: 1678 Expiry Date: 22 February, 2021. Agent: **Hart Bros Seeds Pty Ltd**, Junee, NSW.

'Snowpeak'

Application No: 1999/210 Grantee: **Agriculture Victoria Services Pty Ltd**, Attwood, VIC and **Grains Research and Development Corporation**, Barton, ACT.

Certificate No: 1679 Expiry Date: 22 February, 2021.

Prunus armeniaca Apricot

'Huon Pride'

Application No: 1995/197 Grantee: **Laszlo Kocsis**. Certificate No: 1666 Expiry Date: 15 February, 2026. Agent: **Geoffrey Britton**, Neerim East, VIC.

Rosa hybrid Rose

'Dorothea Howard'

Application No: 1994/204 Grantee: **Mrs HM Barclay**. Certificate No: 1657 Expiry Date: 12 October, 2014. Agent: **Floravision Pty Ltd**, Salisbury, SA.

'Fryxotic' syn Warm Wishes

Application No: 1998/024 Grantee: **Gareth Fryer**. Certificate No: 1656 Expiry Date: 7 February, 2021. Agent: **Floravision Pty Ltd**, Salisbury, SA.

'JACirst' syn Artistry

Application No: 1998/074 Grantee: **Bear Creek Gardens, Inc.**.

Certificate No: 1658 Expiry Date: 8 February, 2021. Agent: **Swane's Nurseries Australia Pty Limited**, Dural, NSW.

Scaevola aemula Fanflower

'Rhapsody'

Application No: 1999/035 Grantee: **RW Rother**. Certificate No: 1694 Expiry Date: 5 March, 2021.

Agent: Tony Kebblewhite t/a Florabundance Wholesale Nursery, Verrierdale, QLD.

'Sweet Serenade'

Application No: 1999/034 Grantee: **RW Rother**. Certificate No: 1695 Expiry Date: 5 March, 2021.

Agent: Tony Kebblewhite t/a Florabundance Wholesale Nursery, Verrierdale, QLD.

Sporobolus virginicus

Sand Couch

'Nathus Green'

Application No: 1997/101 Grantee: Todd Layt, Clarendon,

NSW.

Certificate No: 1659 Expiry Date: 8 February, 2021.

Sutera cordata

Bacopa

'Bridal Showers'

Application No: 1999/244 Grantee: Pixie Plants, Devon

Meadows, VIC.

Certificate No: 1712 Expiry Date: 21 March, 2021.

Triticum aestivum

Wheat

'Lang'

Application No: 1999/325 Grantee: **The State of Queensland through its Department of Primary Industries**, Brisbane, QLD and **Grains Research and Development Corporation**, Barton, ACT.

Certificate No: 1661 Expiry Date: 8 February, 2021.

'Petrie'

Application No: 1999/326 Grantee: **The State of Queensland through its Department of Primary Industries**, Brisbane, QLD and **Grains Research and Development Corporation**, Barton, ACT.

Certificate No: 1662 Expiry Date: 8 February, 2021.

'Wylah'

Application No: 1999/163 Grantee: **Department of Agriculture for and on behalf of the State of New South Wales,** Orange, NSW and **Grains Research and Development Corporation**, Barton, ACT.

Certificate No: 1663 Expiry Date: 14 February, 2021.

Triticum turgidum ssp turgidum **Durum Wheat**

'Arrivato'

Application No: 1999/324 Grantee: New Zealand Institute for Crop and Food Research Ltd.

Certificate No: 1664 Expiry Date: 15 February, 2021. Agent: **Heritage Seeds Pty Ltd**, Mulgrave, VIC.

'line 4210.23.6'

Application No: 1999/290 Grantee: New Zealand Institute for Crop and Food Research Ltd.

Certificate No: 1665 Expiry Date: 15 February, 2021. Agent: **Heritage Seeds Pty Ltd**, Mulgrave, VIC.

'Tamaroi'

Application No: 1997/326 Grantee: **Department of Agriculture for and on behalf of the State of New South Wales,** Tamworth, NSW and **Grains Research and Development Corporation**, Barton, ACT.

Certificate No: 1711 Expiry Date: 19 March, 2021.

Vicia faba

Field Bean

'Ascot VF'

Application No: 1995/295 Grantee: Luminis Pty Ltd,

Adelaide, SA.

Certificate No: 1692 Expiry Date: 27 February, 2021.

'Fiesta VF'

Application No: 1997/327 Grantee: Luminis Pty Ltd, Adelaide, SA and Grains Research and Development Corporation, Barton, ACT.

Certificate No: 1696 Expiry Date: 5 March, 2021.

Vicia narbonensis

Narbon Bean

'Tanami'

Application No: 1999/216 Grantee: **Agriculture Victoria Services Pty Ltd**, Attwood, VIC and **Grains Research and Development Corporation**, Barton, ACT.

Certificate No: 1680 Expiry Date: 22 February, 2021.

Xanthostemon chrysanthus

Xanthostemon

'Trailblazer'

Application No: 2000/054 Grantee: Hilder's Nursery,

Upper Stone via Ingham, QLD.

Certificate No: 1702 Expiry Date: 15 March, 2026.

DENOMINATION CHANGED

Acacia leprosa Cinnamon Wattle

'Scarlet Blaze'

Application No: 1998/148 From: 'RBGM9801'

Alstroemeria hybrid Peruvian Lily

'Kodelight' syn Inca Delight

Application No: 1998/029 From: 'Inca Delight'

'Kodream' syn Inca Dream

Application No: 1999/367 From: 'Inca Dream'

'Komolight' syn Inca Moonlight

Application No: 1998/194 From: 'Inca Moonlight'

'Mini Bell' syn Inca Blaze

Application No: 1998/192

From: 'Inca Blaze'

Avena sativa
Oats

'Taipan'

Application No: 2000/299

From: 'Po 555'

Gossypium hirsutum

Cotton

'DP 555 BG/RR'

Application No: 1999/355 From: 'NuPEARL RR'

Magnolia grandiflora

Magnolia

'STRGRA'

Application No: 1999/364 From: 'Baby Grand'

Pittosporum tenuifolium

Pittosporum

'Golden Sheen'

Application No: 1999/122

From: 'PTSS2'

'Ivory Pillar'

Application No: 1999/124

From: 'PTGP1'

'Ivory Sheen'

Application No: 1999/125

From: 'PTSS1'

CHANGE OF AGENT

From: Syngenta Seeds Pty Ltd

To: D.M.A. Smit

For the following variety:

Tagetes hybrid **Marigold**

'Polvnema'

Application No: 1997/150 Certificate Number: 1456

From: Sunrise Seed Potatoes Pty Ltd

To: Harvest Moon

For the following variety:

Solanum tuberosum

Potato

'Platina'

Application No: 1998/054

From: Kenny Lane Nurseries Pty Ltd To: Phillips Ormonde & Fitzpatrick

For the following variety:

Lilium hybrid **Lily**

'Siberia'

Application No: 1994/230 Certificate Number: 1382

From: Wholesale Ornamental Nurserymen Pty Ltd

To: Plants Management Australia Pty Ltd

For the following varieties:

Mandevilla xamabilis

Mandevilla

'Ruby Star'

Application No: 1996/072 Certificate Number: 948

'White Delite'

Application No: 1996/071 Certificate Number: 947

From: Pacific Seeds Pty Ltd

To: Wrightson Seeds (Australia) Pty Ltd

For the following variety:

Lolium perenne

Perennial Ryegrass

'Embassy'

Application No: 1991/027 Certificate Number: 509

From: Grandiflora Nurseries Pty Ltd

To: Yates Botanicals Pty Ltd For the following variety:

Rosa hybrid

Rose

'Schovian' syn **Viviane**

Application No: 1995/119 Certificate Number: 1005

From: Burbank Biotechnology Pty Ltd To: Yates Botanicals Pty Limited For the following varieties:

Ficus benjamina

Weeping Fig

'Francis' syn Francis Goldstar

Application No: 1995/062 Certificate Number: 872

'Reginald'

Application No: 1992/108 Certificate Number: 522

Ficus elastica

India Rubber Tree

'Sylvie'

Application No: 1997/306

Gypsophila paniculata
Baby's Breath

'Dangyhappy' syn **Happy Festival**

Application No: 1996/102 Certificate Number: 1153

'Festival' syn Pink Festival

Application No: 1995/065 Certificate Number: 1151

'Magic Arbel'

Application No: 1996/104 Certificate Number: 1155

'Magic Gilboa' syn Gilboa

Application No: 1995/063 Certificate Number: 1149

'Magic Golan' syn Golan

Application No: 1995/064 Certificate Number: 1150

'Magic Tavor'

Application No: 1996/103 Certificate Number: 1154

'White Festival'

Application No: 1995/066 Certificate Number: 1152

Limonium altaica Limonium

'Tall Emille'

Application No: 1994/154 Certificate Number: 840

Limonium hybrid **Limonium**

'Daicean' syn Ocean Blue

Application No: 1992/057 Certificate Number: 382

'Oceanic Blue'

Application No: 1992/058 Certificate Number: 394

'Oceanic White'

Application No: 1992/059 Certificate Number: 1148

Solidago hybrid Solidago

'Dansolgold'

Application No: 2000/012

'Dansolmonte'

Application No: 2000/014

'Dansosolo'

Application No: 2000/013

Spathiphyllum hybrid Spathiphyllum

'Frederick'

Application No: 1996/127 Certificate Number: 1372

Syngonium podophyllum Syngonium

'Gold Allusion'

Application No: 1997/152 Certificate Number: 1365

'Maria Allusion' syn Cherry Allusion

Application No: 1998/132 Certificate Number: 1366

'White Holly'

Application No: 1997/151 Certificate Number: 1396

Agriculture Victoria Services Pty Ltd are no longer acting as Agent for the following varieties:

Solanum tuberosum

Potato

'Smith's Astra'

Application No: 1998/025 Certificate Number: 1369

'Smith's Aurora'

Application No: 1998/186 Certificate Number: 1367

'Smith's Comet'

Application No: 1998/187 Certificate Number: 1368

'Smith's Orion'

Application No: 1997/274 Certificate Number: 1373

CHANGE OF AGENT'S NAME

From: Crop & Food Research

To: Crop & Food Research Australia Pty Ltd

For the following varieties:

Pisum sativum Field Pea

'Trounce'

Application No: 1995/217

Solanum tuberosum

Potato

'Crop 4'

Application No: 1998/170

'Driver' syn Golden Delight

Application No: 1998/172

'Red Rascal'

Application No: 1997/180 Certificate Number: 1329

From: Homewood Asset Pty Ltd

To: Floravision Pty Ltd For the following varieties:

Rosa hybrid Rose

'Devilk'(h syn **Sparkling Orange**(h

Application No: 1993/131 Certificate Number: 591

'Devnovia'() syn **Megan**() Application No: 1993/133 Certificate Number: 593

'Devrise' syn Cerise Dawn

Application No: 1993/132 Certificate Number: 592

'Devtinta' syn Obsession

Application No: 1993/134 Certificate Number: 594

'Dorothea Howard'

Application No: 1994/204 Certificate Number: 1657

'Frystar' (b syn Liverpool Remembers (b Application No: 1994/200 Certificate Number: 599

'Frytranquil' syn Golden Moments

Application No: 1994/199 Certificate Number: 598

'Frytrooper' syn Daily Post

Application No: 1994/201 Certificate Number: 600

'Fryxotic' syn Warm Wishes

Application No: 1998/024 Certificate Number: 1656

'Smooth Melody' syn **Hadmelody**

Application No: 1993/264 Certificate Number: 596

From: Novartis Seeds Pty Ltd To: Syngenta Seeds Pty Ltd For the following variety:

Phaseolus vulgaris Bean

'Jade'

Application No: 1991/119 Certificate Number: 396

From: AgriSeeds Research Ltd To: Heritage Seeds Pty Ltd For the following varieties

Festuca arundinacea **Tall Fescue**

'Prosper'

Application No: 2000/039

Lolium multiflorum Italian Ryegrass

'Barberia'

Application No: 2000/038

CHANGE OF ASSIGNMENT

From: Anthony Philip Llanos and Cassandra Ann Llanos To: Cassandra Ann Llanos For the following variety:

Persea americana **Avocado**

'Llanos Hass'

Application No: 1997/159 Certificate Number: 1540

From: Iolanda Ralli

To: G & I Ralli & Sons Pty Ltd as trustee for the Ralli

Family Trust

For the following variety:

Vitis vinifera Grape

'Ralli Seedless'

Application No: 1992/151 Certificate Number: 695

From: BV De ZPC To: HZPC Holland BV For the following varieties:

Solanum tuberosum

Potato

'Celeste'

Application No: 1997/059 Certificate Number: 1412

'Redstar'

Application No: 1999/119

'Victoria'

Application No: 1999/121

From: Coop "de ZPC" BA To: HZPC Holland BV For the following varieties:

Solanum tuberosum **Potato**

'Goldstar'

Application No: 1996/284 Certificate Number: 1411

'Latona'

Application No: 1996/283 Certificate Number: 1135

'Royal Blue'

Application No: 1996/197 Certificate Number: 1410

'Symfonia'

Application No: 1996/196 Certificate Number: 1134

From: Hettema BV To: HZPC Holland BV For the following variety:

Solanum tuberosum

Potato

'Platina'

Application No: 1998/054

From: Hettema Zonen Keewkbedrijf BV

To: HZPC Holland BV For the following varieties:

Solanum tuberosum

Potato

'Liseta'

Application No: 1990/074 Certificate Number: 274

'Mondial'

Application No: 1990/076 Certificate Number: 276

'Novita'

Application No: 1995/253 Certificate Number: 871

'Remarka'

Application No: 1995/126 Certificate Number: 666

'St. Johns'

Application No: 1996/039 Certificate Number: 1223

From: George Peter Ribarits To: Joyce Rita Ribarits For the following variety:

Vitis vinifera

Grape

'Ribarits Red Seedless'

Application No: 1998/115

From: CPRO-DLO

To: Plant Research International B.V.

For the following variety:

Malus domestica

Apple

'Red Elstar'

Application No: 1989/011 Certificate Number: 1056

From: Harkhill Agricultural Services Pty Ltd

To: Simcoe Holdings Pty Ltd For the following variety:

Citrus sinensis
Sweet Orange

'Rohde Summer Navel'

Application No: 1989/005 Certificate Number: 1225

CHANGE OF APPLICANT'S NAME

From: Novartis Seeds B.V. To: Syngenta Seeds B.V. For the following varieties:

Verbena hybrid

Verbena

'Charmena'

Application No: 2000/222

'Florena'

Application No: 2000/223

'Luxena'

Application No: 2000/224

'Morena'

Application No: 2000/225

'Mylena'

Application No: 2000/226

'Scarlena'

Application No: 2000/227

'Vertis'

Application No: 2000/228

From: Novartis Seed, Inc To: Syngenta Seeds, Inc For the following variety:

Phaseolus vulgaris

Bean

'Jade'

Application No: 1991/119 Certificate Number: 396

From: New Zealand Pastoral Agriculture Research Institute

Limited

To: AgResearch Limited For the following varieties:

Bromus stamineus

Brome Grass

'Grasslands Gala'

Application No: 1991/090 Certificate Number: 212

'Grasslands Excel'

Application No: 1998/087 Certificate Number: 1547

Dactylis glomerata

Cocksfoot

'Grasslands Kara'

Application No: 1989/051 Certificate Number: 44

'Grasslands Vision'

Application No: 1998/086 Certificate Number: 1312

Festuca arundinacea

Tall Fescue

'Flecha' syn Grasslands Flecha

Application No: 1998/163

'Grasslands Advance'

Application No: 1993/162 Certificate Number: 331

Lolium hybrid **Ryegrass**

'Grasslands Impact'

Application No: 1996/004 Certificate Number: 1083

Lolium perenne
Perennial Ryegrass

'Grasslands Lincoln'

Application No: 1992/011 Certificate Number: 346

'Grasslands Samson'

Application No: 1996/003 Certificate Number: 1082

Lolium perenne x Lolium multiflorum **Hybrid Ryegrass**

'Grasslands Greenstone'

Application No: 1990/080 Certificate Number: 142

Lotus corniculatus
Birdsfoot Trefoil

'Grasslands Goldie'

Application No: 1992/098 Certificate Number: 345

Medicago sativa Lucerne

'Grasslands Torlesse'

Application No: 1996/036 Certificate Number: 1586

Neotyphodium Iolii Endophyte – Ryegrass

'AR1'

Application No: 1997/013

Neotyphodium sp Endophyte – Fescue

'AR501'

Application No: 1997/111

Plantago lanceolata Plantain

'Grasslands Lancelot'

Application No: 1996/016 Certificate Number: 736

Trifolium fragiferum Strawberry Clover

'Grasslands Onward'

Application No: 1995/293 Certificate Number: 735

Trifolium pratense Red Clover

'Grasslands Colenso'

Application No: 1990/077 Certificate Number: 192

'Grasslands G27'

Application No: 1994/213 Certificate Number: 500

Trifolium repens
White Clover

'Grasslands Bounty'

Application No: 1998/080 Certificate Number: 1546

'Grasslands Challenge'

Application No: 1995/106 Certificate Number: 797

'Grasslands Demand'

Application No: 1992/188 Certificate Number: 338

'Grasslands Kopu'

Application No: 1989/024 Certificate Number: 116

'Grasslands Nusiral'

Application No: 1999/129 Certificate Number: 1416

'Grasslands Prestige'

Application No: 1992/187 Certificate Number: 337

'Grasslands Sustain'

Application No: 1995/107 Certificate Number: 749

'Grasslands Tahora'

Application No: 1989/023 Certificate Number: 37

'PROP' Syn WEF

Application No: 1993/193 Certificate Number: 380

'Tillman II'

Application No: 1996/191 Certificate Number: 1025

From: New Zealand Pastoral Agriculture Research Institute Limited and W-L Research Inc.

To: AgResearch Limited and W-L Research Inc.

For the following variety:

Medicago sativa Lucerne

'Grasslands Kaituna'

Application No: 1996/037 Certificate Number: 1398

From: Agriculture Victoria Services Pty Ltd and The New Zealand Pastoral Agriculture Research Institute Limited To: Agriculture Victoria Services Pty Ltd and AgResearch Limited

For the following variety:

Lolium perenne
Perennial Ryegrass

'Fitzroy'

Application No: 1997/179

From: Hodder & Tolley Ltd To: Wrightson Seeds Limited For the following varieties:

Lolium perenne
Perennial Ryegrass

'Banks'

Application No: 1992/099 Certificate Number: 529

'Embassy'

Application No: 1991/027 Certificate Number: 509

APPLICATIONS WITHDRAWN

The following varieties are no longer under provisional protection:

Alstroemeria hybrid Peruvian Lily

'Konona 90-2-2'Application No: 1998/027

Brassica napus var oleifera Canola

'AG Judge'

Application No: 2000/267

Cynodon dactylon ssp pulchellus Native Couch

'Wirlga'

Application No: 1997/099

Lactuca sativa
Lettuce

'Silverado'

Application No: 2000/015

Pentas lanceolata
Pentas

'Blushing Pearl'

Application No: 1999/063

Polygala myrtifolia var grandiflora Polygala

'White Flamingo'

Application No: 1999/302

Rosa hybrid Rose

'Granddelta'

Application No: 2000/089

'Grandepsilon'

Application No: 2000/087

Solanum tuberosum

Potato

'Pike'

Application No: 2000/045

Sutera cordata
Bacopa

'Gold'n Pearls'

Application No: 1999/300

Triticum aestivum

Wheat

'QT7057'

Application No: 1999/330

'QT7509'

Application No: 1999/329

'OT7704'

Application No: 1999/328

GRANTS SURRENDERED

The following varieties are no longer under PBR protection:

Alstroemeria hybrid **Peruvian Lily**

'583 JA'

Application No: 1996/008 Certificate Number: 888

'587B'

Application No: 1996/007 Certificate Number: 924

'Staprimil' syn Emily

Application No: 1997/247 Certificate Number: 1351

Chamelaucium uncinatum

Geraldton Wax

'Kismet'

Application No: 1992/016 Certificate Number: 940

CORRIGENDA

Festuca arundinacea

Tall Fescue

'Bombina'

Application No: 1994/134 Certificate Number: 775

Lupinus albus White Lupin

'Magna'

Application No: 1998/205 Certificate Number: 1389

Rhododendron hybrid Rhododendron

'Australian Cameo'

Application No: 1993/154 Certificate Number: 540

Rosa hybrid Rose

'Korbolak' syn Melody

Application No: 1989/129 Certificate Number: 97

'Korkunde' syn Toscana

Application No: 1989/130 Certificate Number: 98

'Kormador' syn Tamara

Application No: 1989/131 Certificate Number: 99

'Meicitrem' syn Lemon Sunblaze

Application No: 1996/244 Certificate Number: 1173

'Meipelta' syn Fushia Meidiland

Application No: 1995/021 Certificate Number: 922

Scaevola aemula Fanflower

'Blue Fandango'

Application No: 1994/118 Certificate Number: 1024

CORRIGENDA

Acacia cognata
Bower Wattle

'Limelight'

Application No: 2000/034

Journal Reference: PVJ 14.1 page 15

The comparator 'Mop Top' should correctly have been

named 'UY2' (Application No. 1999/343).

Alstroemeria hybrid Peruvian Lily

'Savannah'

Application No: 1999/350

Journal Reference: PVJ 13.4 page 16

The location of the comparative trial should read

Lenswood, SA.

Verticordia plumosa x Chamelaucium uncinatum Waxflower hybrid

'Eric John'

Application No: 1990/009

Journal Reference: PVJ 3.1 page 17

In the origin section, one of the putative parents was thought to be *C. ciliatum*. However, DNA fingerprinting recently identified the parentage as *Verticordia plumosa* x

Chamelaucium uncinatum.

Petunia hybrid Petunia

'Cobink'

Application No: 1999/156

Journal Reference: PVJ 13.2 page 46

First Australian sale should read August 1998.

Pittosporum tenuifolium
Pittosporum

'Ivory Sheen'

Application No: 1999/125

'Golden Sheen'

Application No: 1999/122

Journal Reference: PVJ 13.2

The photo and caption labels should read from left to right – 'PTSS1'('Ivory Sheen'), 'PTGP1' ('Ivory Pillar'), 'PTSS2' ('Golden Sheen'), 'Sunburst' and 'Stirling Mist'.

Rhododendron hybrid **Azalea**

'Princess Barbara'(D) Application No: 1994/139

Journal Reference: PVJ 7.4 page 16

In the origin section, it has been published that the variety arose from controlled pollination of two unnamed varieties. Where in fact, the breeder's code of this variety is 77-8-C1 and it is a spontaneous mutation from 'Princess Rosey'

(breeder's code 77-8-C).

APPENDIX 1

FEES

Two fee structures exist as a result of the transition from Plant Variety Rights to Plant Breeders Rights.

For new applications (those lodged on or after 11 November 1994) the PBR fees apply. For older applications lodged before 11 November 1994 and not finally disposed of (Granted, Withdrawn, Refused etc.) the PVR fees in force at the time apply.

The Treasurer has determined that all statutory fees under PBR regulations will be exempted from GST.

Payment of Fees

All cheques for fees should be made payable and sent to:

Collector of Public Monies C/-Plant Breeders Rights Office GPO Box 858 Canberra, ACT 2601

The **application fee** (\$300) must accompany the application at the time of lodgement.

Consequences of not paying fees when due

Application fee

Should an application not be accompanied by the prescribed application fee the application will be deemed to be 'non-valid' and neither assigned an application number nor examined for acceptance pending the payment of the fee.

Examination fee

Non-payment of the examination fee of an application will automatically result, at the end of 12 months from the date of acceptance, in a refusal of the application. The consequences of refusal are the same as for applications deemed to be inactive (see 'inactive applications' below).

Consideration of a request for an extension of the period of provisional protection from the initial 12 month period may require the prior payment of the examination fee.

Certificate fee

Following the successful completion of the examination, including the public notice period, the applicant will be required and invoiced to pay the certification fee. Payment of the certification fee is a prerequisite to granting PBR and issuing the official certificate by the PBR office. Failure to pay the fee may result in a refusal to grant PBR.

Annual fee

Should an annual renewal fee not be paid within 30 days after the due date, the grant of PBR will be revoked under Section 50 of the PBR Act. To assist grantees, the PBR office will invoice grantees or their Australian agents for renewal fees.

Inactive applications

An application will be deemed inactive if, after 24 months of provisional protection (or 12 months in the case of non-payment of the examination fee) the PBR Office has not received a completed application or has not been advised to

proceed with the examination or an extension of provisional protection has not been requested or not granted or a certificate fee has not been paid. Inactive applications will be examined and, should they not fully comply with Section 44 of the PBR Act 1994, they will be refused. As a result provisional protection will lapse, priority claims on that variety will be lost and should the variety have been sold, it will be ineligible for plant breeders rights on reapplication. Continued use of labels or any other means to falsely imply that a variety is protected after the application has been refused is an offence under Section 75 of the Act.

FEES

	Basic Fees		Schedule		
	A	В	C	D	
Application Examination – per application Certificate	\$ 300 1400 300	300 1200 300	400 1400 250	300 800 300	
Total Basic Fees	2000	<u>1800</u>	<u>2050</u>	<u>1400</u>	
Annual Renewal – all applications	300				

Schedule

A Single applications and applications based on an official overseas test reports.
B Applicable when two or more Part 2 Applications are lodged simultaneously and the varieties are of the same genus and the examinations can be completed at one location at the same time.
C Applications lodged under PVR (prior to 10th Nov 1994)
D Applicable to 5 or more applications examined at an Accredited Centralised Testing Centre

Other Fees

Other rees	
Variation to application(s) – per hour or part thereof	75
Change of Assignment – per application	100
Copy of an application (Part1 and/or Part2), an objection	
or a detailed description	50
Copy of an entry in the Register	50
Lodging an objection	100
Annual subscription to Plant Varieties Journal	40
Back issues of Plant Varieties Journal	14
Administration – Other work relevant to PBR – per hour or part thereof	75
Application for declaration of	
essential derivation	800
Application for	
(a) revocation of a PBR	500
(b) revocation of a declaration of essential derivation	500
Compulsory licence	500
Request under subsection 19(11) for exemption from	
public access – varieties with no direct use as a consumer	

APPENDIX 2

Plant Breeders Rights Advisory Committee (PBRAC)

(Members of the PBRAC hold office in accordance with Section 85 of the Plant Breeder's Rights Act 1994.)

Dr Paul Brennan PO Box 144 LENNOX HEAD NSW 2478 Representing Plant Breeders

Ms Cheryl McCaffery Proprietor Eclipse IP Management PO Box 2221 Milton Business Centre MILTON QLD 4064 Member with appropriate qualifications and experience

Mr David Moore Consultant Applied Economic and Technology Services PO Box 193 GAWLER, SA 5118 Representing consumers

Mr Peter Neilson Crop and Food Research Birrabee Park Bowna via ALBURY NSW 2640 Representing Plant Breeders

Mr Hugh Roberts Farmer 'Birralee' COOTAMUNDRA NSW 2694 Representing Users

Ms Anna Sharpe Clayton Utz GPO Box 55 BRISBANE QLD 4000 Member with appropriate qualifications and experience

Mr Doug Waterhouse (Chair) Registrar, Plant Breeders Rights GPO Box 858 CANBERRA ACT 2601

Comments on the technical operation of, or amendments to, the Plant Breeder's Rights Act 1994, particularly applications under section 17(2), should be directed through the Chairman.

28th MEETING OF THE PLANT BREEDER'S RIGHTS ADVISORY COMMITTEE (PBRAC)

The 28th meeting of the Plant Breeder's Rights Advisory Committee (PBRAC) was held in Canberra on 9 November 2000. One PBRAC member was unable to attend.

Key matters discussed were:

The Plant Breeder's Rights Amendment Bill 2000

The PBRAC were opposed to the proposal to include 'Nothing in this Act shall be taken to limit the capacity of the States and Territories to regulate a person's exercise of the rights set out in section 11 of this Act' (at the end of section 11).

The Committee was unclear whether the formulation (a) did not prevent other laws limiting a PBR owner's rights

- (b) did not limit the other laws regulating how a PBR owner exercised their rights
- The Committee was concerned that the breeder's right should not be prohibited as opposed to regulated. In any case, it believed that the formulation was unnecessary, and that the sole organisation seeking its inclusion should be asked to provide reasons for including unnecessary wording.

PBRAC recommended its views should be relayed to the meeting of the Without Prejudice Group, a group specially convened to advance solutions to the problems inherent in the current section 18 of the PBRA, which was scheduled to meet on 10 November 2000.

Future Work Program

PBRAC noted the changes in Departmental structure and the need to prioritise its own work program to achieve the following objectives:-

- Acceptance of amendments/clarifications to the Plant Breeder's Rights Act 1994
- Demonstrated growth in the number of plant varieties submitted for registration under the PBR scheme
- International acceptance of Australia's plant protection standards
- Public support for information provided on Australia's PBR scheme

Report on Access to Biological Resources in Commonwealth Areas

PBRAC noted the recommendations of the report released by the Department of Environment and Heritage. The Committee discussed recommendation 41 of the report 'that IP Australia consider amending patent law to require proof of source and, where appropriate, prior informed consent, as a prerequisite for granting a patent.' The Committee considered that patent legislation was designed to meet a different purpose and that the amendment of patent legislation in the manner envisaged was an inappropriate way to achieve the desired result.

Harmonisation of Stability Requirements between Australia and New Zealand and Use of Centralised Testing Systems.

PBRAC recommended that the PBRO respond positively to an approach by the New Zealand Plant Breeding and Research Association proposing that stability requirements be moderated for seed propagated varieties on a case by case basis. Where testing for stability was waived, more weight would be placed on the assessment of uniformity.

PBRAC recommended that industry's use of existing Centralised Testing Centres be explored further. In addition, the PBRO should investigate the extension of existing procedures to notify applicants of the advisability of local grow-outs for 'problem taxa' and the establishment of list on the PBR web site.

Exemptions from the Section 17 (Farm Saved Seed) Provision and Extension of the Section 22 (Duration of Grant) Provision.

PBRAC recommended the development of objective criteria to provide the basis against which recommendations might be made to establish precedents on these matters.

PBRAC recalled its earlier deliberations to exempt mangoes acknowledging that earlier discussion had not encompassed all possible options, also *noting* that s18 and its interaction with the Farm Saved Seed s17 would have negated any benefit for an exemption from s17. PBRAC *recommended* that all available options be canvassed, including through public comment, before the matter is referred back to the Minister for his decision.

US Patents Office Changes to Administrative Practice

PBRAC noted that advice had been received that the US Patents Office had changed its administrative practice. Previously, 4-6 years of exploitation had been allowed before lodgement of a US plant patent application (in accordance with UPOV). This had been reduced to either (i) one year from the date of filing or (ii) the date of the first registration in a UPOV country for the same variety.

The Committee noted that this may be inconsistent with US commitments under UPOV and that representations might need to be made if the advice proved correct.

29th MEETING OF THE PLANT BREEDER'S RIGHTS ADVISORY COMMITTEE (PBRAC)

The 29th meeting of the Plant Breeder's Rights Advisory Committee (PBRAC) was held in Canberra on 8 March 2001.

Key matters discussed were:

The Plant Breeder's Rights Amendment Bill 2001

PBRAC recommended that proposed amendments to the PBR Act should proceed, given their near universal support.

International Acceptance of Australia's Plant Protection Standards

PBRAC noted the importance of Australian attendance at UPOV meetings and expressed support for a number of Australian positions proposed to be put forward at the April 2001 UPOV meeting in Geneva. Such threshold issues include the rules that selection of a new variety continue to be allowable from within an existing variety and that distinctness only need be demonstrated through one characteristic.

US Patents and Trademark Office (USPTO) Administrative Change

PBRAC noted that further advice had been received in relation to the USPTO's changed practice regarding asexually-reproduced plant varieties.

At the PBRAC's November 2000 meeting, it had been noted that the USPTO was taking the position that a foreign grant of a plant variety protection certificate, under the UPOV Convention, constituted a 'patent' or 'inventor's certificate' within the meaning of the relevant US code [35 USC. 102(d)]. This meant that if:

- (c) an application for a plant variety certificate was *filed* in a foreign country *more than 12 months* before the filing of an application in the US to the same plant variety, AND
- (d) the application for plant variety protection was *granted* in the foreign country before the filing of the patent application in the US,

such foreign *grant* would constitute a statutory bar against the patenting of the plant variety in the US.

In January 2001 the US Deputy Commissioner for Patent Examination Policy reversed this changed practice determining, after review of the relevant legislative history, that such a rejection under 35 USC. 102(d), based on a PBR certificate, was <u>not</u> appropriate.

However, it should be noted that the Deputy Commissioner has alluded to the possibility of the Office seeking legislative change to 'further clarify the status of certificates of plant variety protection as prior art.'

PBR Advocacy

PBRAC endorsed the need for a business plan as a framework for PBR advocacy activities.

APPENDIX 3

INDEX OF ACCREDITED CONSULTANT 'QUALIFIED PERSONS'

The following persons have been accredited by the PBR office based on information provided by these persons. From the information provided by the applicants, the PBR office believes that these people can fulfil the role of 'qualified person' in the application for plant breeder's rights. Neither accreditation nor publication of a name in the list of persons is an implicit recommendation of the person so listed. The PBR office cannot be held liable for damages that may arise from the omission or inclusion of a person's name in the list nor does it assume any responsibility for losses or damages arising from agreements entered into between applicants and any person in the list of accredited persons. Qualified persons charge a fee for services rendered.

A guide to the use of the index of consultants:

- locate in the left column of Table 1 the plant group for which you are applying;
- listed in the right column are the names of accredited qualified persons from which you can choose a consultant;
- in Table 2 find that consultant's name, telephone number and area in which they are willing to consult (they may consult outside the nominated area);
- using the "Nomination of Qualified Person" form as a guide, agree provisionally on the scope and terms of the consultancy; complete the form and attach it to Part 1 of the application form;
- when you are notified that your nomination of a consultant qualified person is acceptable in the letter of acceptance of your application for PBR you should again consult the qualified person when planning the rest of the application for PBR.

TABLE 1

PLANT CONSULTANT'S
GROUP/ NAME
SPECIES/ (TELEPHONE
FAMILY AND AREA IN TABLE 2)

Almonds

Swinburn, Garth

Apple

Baxter, Leslie
Darmody, Liz
Fleming, Graham
Langford, Garry
Mackay, Alastair
Maddox, Zoee
Malone, Michael
Mitchell, Leslie
Pullar, David
Robinson, Ben
Scholefield, Peter
Stearne, Peter
Tancred, Stephen
Valentine, Bruce

Anigozanthos

Paananen, Ian Kirby, Greg

Aroid

Harrison, Peter

Avocado

Swinburn, Garth

Azalea

Barrett, Mike Hempel, Maciej Paananen, Ian

Barley (Common)

Boyd, Rodger Brouwer, Jan Collins, David Khan, Akram Platz, Greg Berry Fruit

Darmody, Liz Fleming, Graham Maddox, Zoee Pullar, David Robinson, Ben Scholefield, Peter

Blueberry

Pullar, David

Bougainvillea

Iredell, Janet Willa

Aberdeen, Ian

Brassica

Baker, Andrew
Easton, Andrew
Cross, Richard
Fennell, John
Kadkol, Gururaj
McMichael, Prue
Pullar, David
Robinson, Ben
Rudolph, Paul
Scholefield, Peter
Tay, David
Young, Heidi
Zadow, Diane

Buddleia

Robb, John Paananen, Ian

Camellia

Paananen, Ian Robb, John

Cassava

Tay, David

Cereals

Brouwer, Jan Bullen, Kenneth Collins, David Cook, Bruce Cooper, Kath Cross, Richard Davidson, James Downes, Ross
Fennell, John
Hare, Raymond
Harrison, Peter
Henry, Robert J
Khan, Akram
Kidd, Charles
Law, Mary Ann
Mitchell, Leslie
Oates, John
Platz, Greg
Poulsen, David
Roake, Jeremy
Rose, John
Scattini, Walter John

Derera, Nicholas AM

Stearne, Peter Stuart, Peter Vertigan, Wayne Wilson, Frances

Cherry

Darmody, Liz Fleming, Graham Mackay, Alastair Maddox, Zoee Mitchell, Leslie Pullar, David Robinson, Ben Scholefield, Peter

Chickpeas

Brouwer, Jan Collins, David Goulden, David

Citrus

Fox, Primrose Gingis, Aron Lee, Slade Maddox, Zoee Mitchell, Leslie Pullar, David Robinson, Ben Scholefield, Peter Swinburn, Garth Sykes, Stephen Topp, Bruce

Mitchell, Leslie Clover Maize Pullar, David Lake, Andrew Slatter, John Robinson, Ben Miller, Jeff Myrtaceae Scholefield, Peter Mitchell, Leslie Dunstone, Bob Nichols, Phillip Fungi, Basidiomycetes Native grasses Conifer Cairney, John Quinn, Patrick Stearne, Peter Fungi, Entomopathogenic Waters, Cathy Cotton Milner, Richard Oat Derera, Nicholas AM Grapes Collins, David Khan, Akram Biggs, Eric Khan, Akram Leske, Richard Platz, Greg Darmody, Liz Cucurbits Fleming, Graham Oilseed crops Cross, Richard Gingis, Aron Downes, Ross Herrington, Mark Lee, Slade Kidd, Charles McMichael, Prue Maddox, Zoee Poulsen, David Pullar, David Mitchell, Leslie Slatter, John Robinson, Ben Pullar, David Scholefield, Peter Robinson, Ben Olives Sykes, Stephen Scholefield, Peter Bazzani, Mr Luigi Cydonia Stearne, Peter Gingis, Aron Pullar, David Baxter, Leslie Swinburn, Garth Sykes, Stephen Onions Dogwood Cross, Richard Darmody, Liz Grevillea Fennell, John Fleming, Graham Herrington, Mark Gingis, Aron Maddox, Zoee Hydrangea Stearne, Peter Khan, Akram Hanger, Brian McMichael, Prue Feijoa Maddox, Zoee Pullar, David Robinson, Ben Robinson, Ben Scholefield, Peter Impatiens Scholefield, Peter Paananen, Ian Fibre Crops Ornamentals - Exotic Khan, Akram Jojoba Abell, Peter Dunstone, Bob Armitage, Paul Fig Angus, Tim Darmody, Liz Legumes Barth, Gail FitzHenry, Daniel Aberdeen, Ian Beal, Peter Fleming, Graham Baker, Andrew Collins, Ian Maddox, Zoee Collins, David Cross, Richard Pullar, David Cook, Bruce Cunneen, Thomas Cruickshank, Alan Forage Brassicas Darmody, Liz Downes, Ross Goulden, David Dawson, Iain Foster, Kevin Derera, Nicholas AM Forage Grasses Harrison, Peter Eggleton, Steve Fennell, John Imrie, Bruce Fisk, Anne Marie Harrison, Peter Kirby, Greg Fitzhenry, Daniel Kirby, Greg Khan, Akram Fleming, Graham Mitchell, Leslie Knights, Edmund Gingis, Aron Slatter, John Lake, Andrew Harrison, Peter Smith, Kevin Law, Mary Ann Hempel, Maciej Loch, Don Forage Legumes Johnston, Margaret Mitchell, Leslie Fennell, John Kirkham, Roger Foster, Kevin Nutt, Bradley Kulkarni, Vinod Harrison, Peter Rose, John Lamont, Greg Hill, Jeff Snowball, Richard Larkman, Clive Lake, Andrew Lenoir, Roland Lentils Lowe, Greg Lubomski, Marek Miller, Jeff Brouwer, Jan Slatter, John Snowball, Richard Collins, David Lunghusen, Mark Goulden, David Maddox, Zoee Forest Trees Khan, Akram McMichael, Prue Lubomski, Marek Milne, Carolynn Lucerne Mitchell, Leslie Fruit Lake, Andrew Nichols, David Beal, Peter Mitchell, Leslie Darmody, Liz Oates, John Nichols, Phillip Fleming, Graham Paananen, Ian Gingis, Aron Robb, John Lupin Robinson, Ben Kennedy, Peter Collins, David Scholefield, Peter Lenoir, Roland Magnolia Maddox, Zoee Singh, Deo McCarthy, Alec Paananen, Ian Stearne, Peter

Stewart, Angus Raspberry Pear Tay, David Darmody, Liz Baxter, Leslie Van der Ley, John Fleming, Graham Darmody, Liz Watkins, Phillip Pullar, David Fleming, Graham Robinson, Ben Ornamentals – Indigenous Langford, Garry Scholefield, Peter Abell, Peter Mackay, Alastair Allen, Paul Maddox, Zoee Rhododendron Angus, Tim Malone, Michael Barrett, Mike Barrett, Mike Pullar, David Paananen, Ian Barth, Gail Robinson, Ben Roses Beal. Peter Scholefield, Peter Cunneen, Thomas Barrett, Mike Tancred, Stephen Dawson, Iain Cross, Richard Valentine, Bruce Derera, Nicholas AM Darmody, Liz Downes, Ross Fitzhenry, Daniel Persimmon Eggleton, Steve Fleming, Graham Swinburn, Garth Fox, Primrose Harrison, Peter Henry, Robert J Gingis, Aron Petunia Hanger, Brian Hockings, David Paananen, Ian Jack, Brian Lee, Peter Nichols, David Johnston, Margaret Maddox, Zoee Photinia Prescott, Chris Kirby, Greg Kirkham, Roger Robinson, Ben Robb, John Lenoir, Roland Scholefield, Peter Pistacia Lowe, Greg Stearne, Peter Lullfitz, Robert Pullar, David Swane, Geoff Lunghusen, Mark Syrus, A Kim Sykes, Stephen McMichael, Prue Van der Ley, John Pisum Milne, Carolynn Sesame Brouwer, Jan Molyneux, W M Bennett, Malcolm Nichols, David Goulden, David Harrison, Peter McMichael, Prue Oates, John Imrie, Bruce Paananen, Ian Potatoes Robinson, Ben Sorghum Baker, Andrew Scholefield, Peter Khan, Akram Singh, Deo Cross, Richard Slatter, John Stearne, Peter Fennell, John Tan, Beng Watkins, Phillip Soybean Kirkham, Roger McMichael, Prue Andrews, Judith Harrison, Peter Worrall, Ross Pullar, David James, Andrew Robinson, Ben Ornithopus Scholefield, Peter Spices and Medicinal Plants Foster, Kevin Stearne, Peter Nichols, Phillip Derera, Nicholas AM Tay, David Nutt. Bradley Khan, Akram Pullar, David Snowball, Richard Proteaceae Osmanthus Stone Fruit Barth, Gail Barrett, Mike Paananen, Ian Kirby, Neil Darmody, Liz Robb, John Robb, John Fleming, Graham Robinson, Ben Pastures & Turf Kennedy, Peter Scholefield, Peter Aberdeen, Ian Mackay, Alistair Anderson, Malcolm Maddox, Zoee Prunus Avery, Angela Malone, Michael Darmody, Liz Cameron, Stephen Pullar, David Fleming, Graham Cook, Bruce Robinson, Ben Kennedy, Peter Downes, Ross Scholefield, Peter Mackay, Alastair Croft, Valerie Swinburn, Garth Maddox, Zoee Harrison, Peter Valentine, Bruce Malone, Michael Kaapro, Jyri Kirby, Greg Porter, Gavin Strawberry Loch, Don Gingis, Aron Pullar, David Miller, Jeff Herrington, Mark Topp, Bruce Mitchell, Leslie Mitchell, Leslie Witherspoon, Jennifer Rose, John Morrison, Bruce Smith, Raymond Pulse Crops Porter, Gavin Scattini, Walter John Bestow Young, Sue Pullar, David Slatter, John Robinson, Ben Brouwer, Jan Smith, Kevin Scholefield, Peter Collins, David Wilson, Frances Zorin, Clara Cross, Richard Kidd, Charles Peanut Sugarcane Oates, John Cruickshank, Alan Cox, Mike Poulsen, David Morgan, Terence George, Doug

Slatter, John

Tay, David

Tay, David

Sunflower

George, Doug

Tomato

Cross, Richard
Gingis, Aron
Herrington, Mark
Khan, Akram
McMichael, Prue
Pullar, David
Robinson, Ben
Scholefield, Peter

Tree Crops

McRae, Tony

Triticale (x Triticosecale Wittmack) Collins, David

Tropical/Sub-Tropical Crops

Harrison, Peter
Kulkarni, Vinod
Pullar, David
Robinson, Ben
Scholefield, Peter
Tay, David
Winston, Ted

Umbrella Tree

Paananen, Ian

Vegetables

Baker, Andrew Beal, Peter Cross, Richard Derera, Nicholas AM Fennell, John Frkovic, Edward Gingis, Aron Harrison, Peter Kirkham, Roger Khan, Akram Lenoir, Roland McMichael, Prue Oates, John Pearson, Craig Pullar, David Robinson, Ben Scholefield, Peter Tay, David Westra Van Holthe, Jan

Verbena

Paananen, Ian

Wheat (Aestivum & Durum Groups)

Brouwer, Jan Collins, David Khan, Akram Platz, Greg

TABLE 2			George, Doug	07 5460 1308 07 5460 1112 fax	Australia
NAME	TELEPHONE	AREA OF OPERATION	Gingis, Aron	03 9887 6120 03 9769 1522 fax	Victoria, South Australia
Abel, Peter	02 9351 8825 02 9351 8875 fax	New South Wales	Goulden, David	0419 878658 mobile 64 3 325 6400	and Southern NSW
Aberdeen, Ian	03 5782 1029 03 5782 2073 fax	SE Australia	Hanger, Brian	64 3 325 2074 fax 03 9756 7532	New Zealand
Allen, Paul Anderson, Malcolm	07 3824 0263 ph/fax 03 5573 0900	SE QLD, Northern NSW	<i>5</i> ,	03 9756 6684 fax 03 9752 0603 fax 0418 598106 mobile	Victoria
A 1 7 17 1	03 5571 1523 fax 017 870 252 mobile	Victoria	Hare, Ray	02 6763 1232 02 6763 1222 fax	QLD, NSW VIC & SA
Andrews, Judith Angus, Tim	02 6951 2614 02 6955 7580 fax	Southern NSW, Northern VIC Australia and New Zealand	Harrison, Peter	08 8948 1894 ph 08 8948 3894 fax	Tropical/Sub-tropical Australia, incl. NT and NW of
Armitage, Paul	02 4751 5702 ph/fax 03 9756 7233 03 9756 6948 fax	Victoria	Hempel, Maciej	0407 034 083 mobile 02 4628 0376	WA and tropical arid areas
Avery, Angela	02 6030 4500 02 6030 4600 fax	South Eastern Australia	Henry, Robert J	02 4625 2293 fax 02 6620 3010	NSW, QLD, VIC, SA
Baker, Andrew	03 6427 8553 03 6427 8554 fax	Tasmania	Herrington, Mark	02 6622 2080 fax 07 5441 2211	Australia
Barrett, Mike	02 9875 3087 02 9980 1662 fax		Hill, Jeff	07 5441 2235 fax 08 8303 9487	Southern Queensland
Barth, Gail	0407 062 494 mobile 08 8303 9580	NSW/ACT	Hockings, David	08 8303 9607 fax 07 5494 3385 ph/fax	South Australia Southern Queensland
Baxter, Leslie	08 8303 9424 fax 03 6224 4481	SA and Victoria	Imrie, Bruce	02 4474 0951 02 4474 0952	CE Assetselie
	03 6224 4468 fax 0181 21943 mobile	Tasmania	Iredell, Janet Willa Jack, Brian	imriecsc@sci.net.au 07 3202 6351 ph/fax 08 9952 5040	SE Australia SE Queensland
Bazzani, Luigi	08 9772 1207 08 9772 1333 fax	Western Australia	James, Andrew	08 9952 5053 fax 07 3214 2278	South West WA
Beal, Peter	07 3286 1488 07 3286 3094 fax	QLD & Northern NSW	Johnston, Margaret	07 3214 2278 07 3214 2410 fax 07 5460 1240	Australia
Bennett, Malcolm Bestow Young, Sue	08 8973 9733 08 8973 9777 fax 02 6795 4695	NT, QLD, NSW, WA	Kaapro, Jyri	07 5460 1455 fax 02 9637 8711	SE Queensland
bestow foung, suc	02 6795 4358 fax 0418 953 050 mobile	Australia	Kadkol, Gururaj	02 9637 8599 fax 03 5381 2377	Sydney and surrounding areas
Biggs, Eric	03 5023 2400 03 5023 3922 fax	Mildura Area	Kennedy, Peter	03 5381 2977 fax 02 6382 7600	North Western Victoria
Boyd, Rodger	08 9380 2553 08 9380 1108 fax	Western Australia	Khan, Akram	02 6382 2228 fax 02 9351 8821	New South Wales
Brouwer, Jan	03 5362 2159 03 5362 2187 fax	South Eastern Australia	Kidd, Charles	02 9351 8875 fax 08 8842 3591	New South Wales
Cairney, John	02 9685 9903 j.cairney@nepean.uws.o	Sydney edu.au		08 8842 3066 fax 0417 336 458 mobile	Southern Australia
Collins, David	08 9622 6100 08 9622 1902 fax	Central Western Wheatbelt of	Kirby, Greg	08 8201 2176 08 8201 3015 fax	South Australia
Cooper, Katharine	0154 42694 mobile 08 8303 6563	Western Australia	Kirby, Neil	02 4754 2637 02 4754 2640 fax	New South Wales
Cox, Mike	08 8303 7119 fax 07 4132 5200	Australia	Kirkham, Roger	03 5957 1200 03 5957 1210 fax	***
Croft, Valerie	07 4132 5253 fax 03 5573 0900	Queensland and NSW	Knights, Edmund	0153 23713 mobile 02 6763 1100	Victoria
Cross, Richard	03 5571 1523 fax 64 3 325 6400	Victoria	Kulkarni, Vinod	02 6763 1222 fax 08 9992 2221	North Western NSW
Cruickshank, Alan	64 3 325 2074 fax 07 4160 0722	New Zealand	Lake, Andrew	08 9992 2049 fax 08 8177 0558 0418 818 798 mobile	Australia
Cunneen, Thomas	07 4162 3238 fax 02 4889 8647	QLD Sudmey Persion	Lamont, Greg	lake@arcom.com.au 02 9652 1285	SE Australia
Darmody, Liz	02 4889 8657 fax 03 9756 6105 03 9752 0005 fax	Sydney Region Australia	Langford, Garry	02 9652 1283 02 9652 1924 fax 03 6266 4344	Sydney region
Davidson, James	02 6246 5071 02 6246 5399 fax	High rainfall zone of temperate Australia	Zungroru, Gurry	03 6266 4023 fax 0418 312 910 mobile	Australia
Dawson, Iain Derera, Nicholas AM	02 6251 2293 02 9639 3072	ACT, South East NSW	Larkman, Clive	03 9735 3831 03 9739 6370	
,	02 9639 0345 fax 0414 639 307 mobile	Australia	Law, Mary Ann	larkman@tpgi.com.au 07 4637 9960	Victoria
Downes, Ross	02 6255 1461 ph 02 6278 4676 fax			07 4637 9962 fax malaw@bigpond.com	Toowoomba region
Dunstone, Bob	0414 955258 mobile 02 6281 1754 ph/fax	ACT, South East Australia South East NSW	Lee, Peter	03 6330 1147 03 6330 1927 fax	SE Australia
Easton, Andrew	07 4690 2666 07 4630 1063 fax	QLD and NSW	Lee, Slade	02 6620 3410 02 6622 2080 fax	Queensland/Northern New South Wales
Eggleton, Steve	03 9876 1097 03 9876 1696 fax	Melbourne Region	Lenoir, Roland Leske, Richard	02 6231 9063 ph/fax 07 4671 3136	Australia Cotton growing regions of
Fennell, John	03 5334 7871 03 5334 7892 fax	Australia	Loch, Don	07 4671 3113 fax 07 3286 1488	QLD & NSW
FitzHenry, Daniel	0419 881 887 02 4862 2487 ph/fax 0417 891 651 mobile	Australia Sydney and surrounding districts	Lowe, Greg	07 3286 3094 fax 02 4389 8750 02 4389 4958 fax	Queensland
Fleming, Graham	03 9756 6105 03 9752 0005 fax	Surrounding districts Australia	Lubomski, Marek	02 4389 4958 fax 0411 327390 mobile 07 5525 3023 ph/fax	Sydney, Central Coast NSW NSW & QLD
Foster, Kevin	08 9368 3670	Austrana Mediterranean areas of Australia	Lullfitz, Robert Lunghusen, Mark	08 9447 6360 03 9752 0477	South West WA
Frkovic, Edward	02 6962 7333 02 6964 1311 fax	Australia	, mak	03 9752 0477 03 9752 0028 fax 0407 050 133 mobile	Melbourne & environs

Mackay, Alastair	08 9310 5342 ph/fax		Scholefield, Peter	08 8373 2488	
	0159 87221 mobile	Western Australia		08 8373 2442 fax	
Maddox, Zoee	03 9756 6105			018 082022 mobile	SE Australia
	03 9752 0005 fax	Australia	Singh, Deo	0418 880787 mobile	
Malana Mishaal	+64 6 877 8196	rustiana	omgn, Deo	07 3207 5998 fax	Brisbane
Malone, Michael		N 71 4	Clatton John		Brisbane
	+64 6 877 4761 fax	New Zealand	Slatter, John	07 4635 0726	
McCarthy, Alec	08 9780 6273			07 4635 2772 fax	
	08 9780 6136 fax	South West WA		0155 88086 mobile	Australia
McMichael, Prue	08 8373 2488		Smith, Kevin	03 5573 0900	
	08 8373 2442 fax	SE Australia		03 5571 1523 fax	SE Australia
McRae, Tony	08 8723 0688		Smith, Stuart	03 6336 5234	
Wiertae, Tony	08 8723 0660 fax	Australia	,	03 6334 4961 fax	SE Australia
M:11 I CC			Snowball, Richard	08 9368 3517	Mediterranean areas of
Miller, Jeff	64 6 356 8019 extn 8027		Showban, Kichard	08 9308 3317	Australia
	64 3 351 8142 fax	Zealand	Ct D.t	02 02(2 2(11	Australia
Milne, Carolynn	07 3206 3509	QLD	Stearne, Peter	02 9262 2611	G 1 ACT 0 NOW
Milner, Richard	02 6246 4169			02 9262 1080 fax	Sydney, ACT & NSW
	02 6246 4042 fax		Stewart, Angus	02 4385 9788ph/fax	
	richardm@ento.csiro.au	Australia		0419 632 123 mobile	Sydney, Gosford
Mitchell, Leslie	03 5821 2021		Stuart, Peter	07 4690 2666	
Witchell, Eestie	03 5831 1592 fax	VIC, Southern NSW		07 4630 1063 fax	SE Queensland
Malamana William		VIC, Southern NS W	Swane, Geoff	02 6889 1545	-
Molyneux, William	03 5965 2011	X7	2 · · · · · · · · · · · · · · · · · · ·	02 6889 2533 fax	
	03 5965 2033 fax	Victoria		0419 841580 mobile	Central western NSW
Morgan, Terence	07 4783 6000		C		
	07 4783 6001 fax	Australia	Swinburn, Garth	03 5023 4644	Murray Valley Region – from
Morrison, Bruce	03 9210 9251			03 5021 3131 fax	Swan Hill (Vic) to Waikere
	03 9800 3521 fax	East of Melbourne			(SA)
Nichols, David	03 5977 4755	SE Melbourne, Mornington	Sykes, Stephen	03 5051 3100	
Meliois, David				03 5051 3111 fax	Victoria
	03 5977 4921 fax	Peninsula and Dandenong	Syrus, A Kim	03 8556 2555	
		Ranges, Victoria		03 8556 2955 fax	Adelaide
Nichols, Phillip	08 9387 7442		Tan, Beng	08 9266 7168	Tucharae
	08 9383 9907 fax	Western Australia	Tall, Belig		Douth & anyinana
Nutt, Bradley	08 9387 7423/		T 1 C 1	08 9266 2495	Perth & environs
•	08 9383 9907 fax	Western Australia	Tancred, Stephen	07 4681 2931	
Oates, John	02 4651 2601	Sydney region, Eastern		07 4681 4274 fax	
Oates, John	02 4651 2578 fax	Australia		0157 62888 mobile	QLD, NSW
D I		Australia	Tay, David	07 5460 1313	
Paananen, Ian	02 4381 0051		-	07 5460 1112 fax	Australia
	02 4381 0071 fax		Topp, Bruce	07 4681 1255	
	0412 826589 mobile	Sydney/Newcastle		07 4681 1769 fax	SE QLD, Northern NSW
Platz, Greg	07 4639 8817		Valentine, Bruce	02 6361 3919	SE QED, Normeni NSW
	07 4639 8800 fax	QLD, Northern NSW	vaicitine, bruce		N C
Porter, Gavin	07 5460 1233	• '	** * * * * * * * * * * * * * * * * * * *	02 6361 3573 fax	New South Wales
r orter, Guvin	07 5460 1455 fax	SE QLD, Northern NSW	Van Der Ley, John	02 6561 5047	
Poulsen, David	07 4661 2944	SE QED, Northern NSW		02 6561 5138 fax	Sydney to Brisbane and New
Foursen, David		CE OLD N. d. NOW		0417 423 768 mobile	England area
	07 4661 5257 fax	SE QLD, Northern NSW	Vertigan, Wayne	03 6336 5221	
Prescott, Chris	03 5998 5100			03 6334 4961 fax	Tasmania
	03 5998 5333		Waters, Cathy	02 6888 7404	
	0417 340 558 mobile	Victoria		02 6888 7201 fax	SE Australia
Pullar, David	03 9415 1533		Watkins, Phillip	08 9525 1800	52 Hashana
	03 9419 1317 fax		watkins, i iiiiip	08 9525 1607 fax	Perth Region
	0418 575 444 mobile	Australia	W		retui Region
Quinn, Patrick	03 5427 0485	SE Australia	Westra Van Holthe, Jan	03 9706 3033	
•		SE Australia		03 9706 3182 fax	Australia
Roake, Jeremy	02 9351 8830		Wilson, Frances	64 3 318 8514	
	02 9351 8875 fax	Sydney Region		64 3 318 8549 fax	Canterbury, New Zealand
Robb, John	02 4376 1330		Winston, Ted	07 4068 8796 ph/fax	
	02 4376 1271 fax			0412 534 514 mobile	QLD, Northern NSW and NT
	0199 19252 mobile	Sydney, Central Coast NSW	Witherspoon, Jennifer	0407 688 457 mobile	South Australia
Robinson, Ben	08 8373 2488	· ·	Worrall, Ross	02 4348 1900	
, 2011	08 8373 2442 fax	SE Australia	., 011411, 10033	02 4348 1910 fax	Australia
Rose, John	07 4661 2944	52. Iusuunu	Vousa IIa: 4:		Australia
NOSE, JUIII		SE O11	Young, Heidi	07 4690 2666	OLD NOW
D 111 F 1	07 4661 5257 fax	SE Queensland		07 4630 1063	QLD, NSW
Rudolph, Paul	03 5362 2175		Zadow, Diane	03 5382 1269	
	03 5381 1210 fax			03 5381 1210 fax	
	0419 145 764 mobile	Victoria		0419 145 763 mobile	Victoria
Scattini, Walter	07 3356 0863 ph/fax		Zorin, Clara	07 3207 4306 ph/fax	
•	Tropical and sub-tropical	l Australia	-	0418 984 555	Eastern Australia

INDEX OF ACCREDITED NON-CONSULTANT 'QUALIFIED PERSONS'

Name

Allen, Antony

Ali, S

Baelde, Arie Barr, Andrew Batta, Rohitas Beatson, Ron Bell, David

Birmingham, Erika Brennan, Paul Breust, P Brewer, L Brindley, Tony Buchanan, Peter Bunker, John Bunker, Kerry

Burton, Wayne Cameron, Nick Cant, Russell

Chin, Robert Chivers, Ian

Clayton- Greene, Kevin

Constable, Greg Cook, Esther Cox, Michael Craig, Andrew Dale, Gary Dear, Brian de Betue, Remco Delaporte, Kate Done, Anthony Donnelly, Peter Downe, Graeme Draganovic, Oliver Dyer, Natalie Eastwood, Russell Eisemann, Robert Elliott, Philip Engel, Richard Gibson, Peter

Granger, Andrew Green, Allan Guy, Graeme Hall, Nicola Harden, Patrick Hart, Ray Higgs, Robert Hill, Jeffrey

Gomme, Simon

Hollamby, Gil Hoppo, Sue Howie, Jake Irwin, John Jackson, B Jackson, Ken

Johnston, Christine

Jupp, Noel

Jaeger, M

Kaehne, Ian Katelaris, A Kebblewhite, Tony

Kennedy, Chris Kimbeng, Collins Knights, Ted Knox, Graham

Kobelt, Eric Langbein, Sueanne Leighton, Alan

Leonforte, Tony Lewin, Laurence

Lewis, Hartley Liu, Chunji

Loi, Angelo Luckett, David

Macleod, Nick Mann, Dorham Mason, Lloyd

McCallum, Lesley Mcdonald, David

Mcmaugh, P Mendham, Neville

Menzies, Kim Moody, David Moore, Stephen

Neilson, Peter Newman, Allen Norriss, Michael

Oakes, John Offord, Cathy Patel, Narandra Paull, Jeff Pearce, Bob

Peppe, Ivan Perrott, Neil Piperidis, George Reid, Peter

Richardson, Thomas

Rose, Ian Rowles, Cherie Salmon, Alexander Sammon, Noel Sandral, Graeme Sanewski, Garth Saperstein, Sylvia Schreuders, Harry Scott, Ralph Smith, Michael Smith, Raymond Smith, Sue Tonks, John Toyer, Christine Trimboli, Daniel Vaughan, Peter Weatherly, Lilia Whalley, R.D.B. Whiley, Tony

Williams, Rex Wilson, Rob Wilson, Stephen Wirthensohn, Michelle

Wright, Gary Yan, Guijun Zeppa, Aldo

APPENDIX 5

ADDRESSES OF UPOV AND MEMBER STATES

International Union for the Protection of New Varieties of Plants (UPOV):

International Union for the Protection of New Varieties of Plants (UPOV)

34, Chemin des Colombettes

CH-1211 Geneva 20 SWITZERLAND

Phone: (41-22) 338 9111 Fax: (41-22) 733 0336 Web site: http://www.upov.int

Plant Variety Protection Offices in individual UPOV Member States:

ARGENTINA

Instituto Nacional de Semillas Ministerio de Economia Secretaria de Agricultura Ganaderia y Pesca Avda. Paseo Colon 922-3. Piso, 1063 Buenos Aires

Phone: (54 11) 4349 2497 Fax: (54 11) 4349 2417 e-mail: inase@sagyp.mecon.ar

AUSTRALIA

Registrar

Plant Breeders Rights Office

P O Box 858 Canberra ACT 2601

Phone: (61 2) 6272 3888 Fax: (61 2) 6272 3650 e-mail: pbr@affa.gov.au

AUSTRIA

Bundesamt und Forschungszentrum fur Landwirtschaft Sortenschutzamt

Postfach 400

Spargelfeldstrasse 191 A- 1226 Wien

Phone: (43 1) 73216 4000 Fax: (43 1) 73216 4211

BELGIUM

Ministere de classes moyennes et de

l'agriculture

Service de la protection des

obtentions

vegetales et des catalogues

nationaux

Tour WTC/3- 11eme etage Avenue Simon Bolivar 30 B-1000 Bruxelles

Phone: (32 2) 208 37 22 Fax: (32 2) 208 37 16

BOLIVIA

Direccion Nacional de Semillas Secretaria Nacional De Agricultural y Ganaderia Avda. 6 de Agosto 2006, Edif. V. Centenario Casilla 4793 La Paz

Phone (591-2) 391 953 Fax: (591-2) 391 608

e-mail: semillas@mail.entelnet.bo

BRAZIL

Servico Nacional de Protecao de Cultivares-SNPC (National Plant Varieties Protection Service) Secretaria de Desenvolvimento Rural-SDR Ministerio da Agricultura e do Abastedimento Esplanada dos Ministerios, Bloco D, Anexo A Terreo, Sala 1-12 CEP 70043-900, Brasilia, DF

Phone: (55-61) 218-2433 Fax: (55-61) 224 2842

e-mail: snpc@agricultura.gov.br

BULGARIA

Patent Office of the Republic of Bulgaria 52 B, Dr. G. M. Dimitrov Blvd. 1113 Sofia

Phone: (359-2) 710 152 Fax: (359-2) 708 325

CANADA

The Commissioner
Plant Breeders' Rights Office
Canadian Food Inspection Agency
(CFIA)
3rd Floor, East Court
Camelot Court
59 Camelot Drive
Nepean, Ontario
K1A OY9

Phone: (1 613) 225 2342 Fax: (1 613) 228 6629

CHILE

Ministerio de Agricultura Servicio Agricola y Ganadero Departamento de Semillas Casilla 1167-21 Santiago de Chile

Phone: (56 2) 696 29 96 Fax: (56 2) 696 64 80

CHINA

The Office for the Protection of New Varieties of Plants Ministry of Agriculture 11 Nong Zhan Guan Nan Li Beijing 100026

Phone: (86-10) 6419 3029 Fax: (86-10) 6419 3082 e-mail: cnpvp@agri.gov.cn

COLOMBIA

Instituto Colombiano Agropecuario (I.C.A)
Division de Semillas
Calle 37 No. 8-43
Santa Fe de Bogota

Phone: (57 1) 232 4697 Fax: (57 1) 232 4695

e-mail: semilla@impsat.net.co

CZECH REPUBLIC

Ministry of Agriculture Department of European Integration Tesnov 17 117 05 Prague 1

Phone: (420) 2 2181 2474 Fax: (420) 2 2181 2970

DENMARK

Plantenyhedsnaevnet (The Danish Institute of Plant and Soil Science) Teglvaerksvej 10, Tystofte DK-4230 Skaelskoer

Phone: (45) 53 59 61 41 Fax: (45) 53 59 01 66

ECUADOR

Institutu Esuatoriano de la Propiedad Intelectual Direccion Nacional de Obtenciones Vegetales Eloy Alfaro y Amazonas Edificio MAG, 3^{er} piso Quito

Phone: (593-2) 566 686 Fax: (593-2) 562 258

e-mail: sectagro@impsat.net.ec

ESTONIA

Variety Control Department Estonian Plant Production Inspectorate EE-71024 Viljandi

Phone: (372 4) 334 650 Fax: (372 4) 334 650 e-mail: plant@plant.agri.ee

FINLAND

Plant Variety Board Plant Variety Rights Office PO Box 232 SF-00171 Helsinki

Phone: (358) 9 160 3316 Fax: (358) 9 160 2443

FRANCE

Comite de la protection des obtentions vegetales 11, rue Jean Nicot F-75007 Paris

Phone: (331) 42 75 93 14 Fax: (331) 42 75 94 25

GERMANY

Bundessortenamt Postfach 61 04 40 D-30604 Hannover

Phone: (49 511) 95 66 5 Fax: (49 511) 56 33 62

e-mail: bsa@bundessortenamt.de

HUNGARY

Hungarian Patent Office Magyar Szabadalmi Hivatal Garibaldi-u.2-B.P. 552 H-1370 Budapest

Phone: (36 1) 312 44 00 Fax: (36 1) 311 4841

IRELAND

Controller of Plant Breeders' Rights Department of Agriculture and Food Backweston Leixlip Co. Kildare

Phone: (353) 1 628 0608 Fax: (353) 1 628 0634 e -mail: backwest@indigo.ie

ISRAEL

Plant Breeders' Rights Council The Volcani Center PO Box 6 Bet-Dagan 50 250

Phone: (972) 3 968 3669 Fax: (972) 3 968 34 92

e-mail: ilpbr_tu@netvision.net.il

ITALY

Ufficio Italiano Brevetti e Marchi Ministero dell'Industria, del Commercio e dell'Artigianato 19,via Molise I-00187 Roma

Phone: (39 06) 47 05 1 Fax: (39 06) 47 05 30 35

JAPAN

Seeds and Seedlings Division Agricultural Production Bureau Ministry of Agriculture, Forestry and Fisheries 1-2-1 Kasumigaseki – Chiyoda-ku Tokyo 100

Phone: (81 3) 35 91 05 24 Fax: (81 3) 35 02 65 72

KENYA

Plant Breeder's Rights Office Kenya Plant Health Inspectorate Service (KEPHIS) Headquarters Waiyaki Way PO Box 49592 Nairobi

Tel: (254 –2) 44 40 29 Fax: (254-2) 44 89 40 e-mail: kephis@nbnet.co.ke

KYRGYZ REPUBLIC

State Agency of Intellectual Property House 10/1, Microregion 11 720049 Bishkek

Tel: (996-3312) 510 810 Fax: (996 3312) 510 813 e-mail: kyrgyzpatent@infotel.kg

MEXICO

Servicio Nacional de Inspection y Certification de Semillas – SNICS Secretaria de Agricultura, Ganaderia y Desarrollo Rural Lope de Vega 125 8· Piso Col. Chapultepec Morales México, D.F. 11570

Phone: (52-5) 203 9427 Fax: (52-5) 250 64 83

NETHERLANDS

Raad voor het Kwekersrecht (Borad of Plant Breeder's Rights) Postbus 104 NL-6700 AC Wageningen

Phone: (31 317) 47 80 90 Fax: (31 317) 42 58 67

e-mail:

raad.kwekersrecht@rkr.agro.nl

NEW ZEALAND

Commissioner of Plant Variety Rights Plant Variety Rights Office PO Box 130 Lincoln, Canterbury

Phone: (64 3) 325 63 55 Fax: (64 3) 325 29 46

NORWAY

Plantesortsnemnda (The Plant Variety Board) Frokontrollen N-1432 As

Phone: (47) 64 94 75 04 Fax: (47) 64 94 02 08

PANAMA

Direccion General del Registro de la Propiedad Industrial (DIGERPI)\ Ministerio de Comercio e Industrias Apartado 9658- Zona 4 Panama 4

Phone: (507) 227 3987 Fax: (507) 227 2139 e-mail: digerpi@sinfo.net

PARAGUAY

Ministerio de Agricultura y Ganaderia Direccion de Semillas (DISE) Gaspar R. de Francia No. 685 c/ Mcal. Estigarribia San Lorenzo

Phone: (595) 21 58 22 01 Fax: (595) 21 58 46 45

POLAND

Research Center of Cultivars Testing (COBORU) 63-022 Slupia Wielka

Phone: (48 61) 285 2341 Fax: (48 61) 285 3558 e-mail: coboru@bptnet.pl

PORTUGAL

Centro Nacional de Registo de Variedades Protegidas (CENARVE) Edificio II da DGPC Tapada da Ajuda P-1300 Lisboa

Phone: (351 213) 613 216 Fax: (351 213) 613 222

e-mail:

dgpc.cenarve@mail.telepac.pt

REPUBLIC OF MOLDOVA

State Commission for Crops Variety Testing and Registration Ministry of Agriculture Bul. Stefan Cel Mare 162 C.P. 1873

C.P. 1873 2004 Chisinau

Phone: (373-2) 24 62 22 Fax: (373-2) 24 69 21

ROMANIA

(new member, address yet to be advised)

RUSSIAN FEDERATION

State Commission of the Russian Federation for Selection Achievements Test and Protection Orlicov per., 1/11 107139 Moscow

Phone: (70-95) 204 49 26 Fax: (70-95) 207 86 26 e-mail: desel@agro.aris.ru

SLOVAKIA

Ministry of Agriculture Dodrovicova 12 812 66 Bratislava

Phone: (421 7) 306 62 90 Fax: (421 7) 306 62 94

SLOVENIA

Plant Variety Protection and Registration Office Parmova 33 1000 Ljubljana

Phone: (386-61) 136 3344 Fax: (386-61) 136 3312 e-mail: UVRSR@gov.si

SOUTH AFRICA

The Registrar
National Department of Agriculture
Directorate of Plant and Quality
Control
PO Box 25322
Gezina

Phone: (27 12) 808 0365 Fax: (27 12) 808 0365

e-mail: variety.control@nda.agric.za

SPAIN

Oficina Espanola de Variedades Vegetales (OEVV)

Instituto Nacional de Investigacion y

Tecnologia

Agraria y Alimentaria

Ministerio de Agricultura, Pesca y

Alimentacion

Jose Abascal, 4-7^a pl. E-28003- Madrid

Phone: (34 91) 347 66 00 Fax: (34 91) 594 27 68

SWEDEN

Statens vaxtsortnamnd (National Plant Variety Board) Box 1247 S-171 24 Solna

Phone: (46) 8 783 12 60 Fax: (46) 8 833 170

e-mail: info@vaxtsortnamnden

SWITZERLAND

Bundesamt fur Landwirtschaft Buro fur Sortenschutz Mattenhofstr. 5 CH-3003 Bern

Phone: (41 31) 322 25 24 Fax: (41 31) 322 26 34

TRINIDAD AND TOBAGO

Controller (Ag) Intellectual Property Office Ministry of Legal Affairs 34 Frederick Street Port of Spain

Tel: (1 868) 625 9972 Fax: (1 868) 624 1221

e-mail:

Controller.IPOffice@opus.co.tt

UKRAINE

State Patent Office of Ukraine 8 Lvov Square 254655 Kiev 53, GSP- 655

Phone: (880 44) 212 50 82 Fax: (880 44) 212 34 49

UNITED KINGDOM

The Plant Variety Rights Office White House Lane Huntingdon Road Cambridge CB3 OLF

Phone: (44 1223) 34 23 81 Fax: (44 1223) 34 23 86

UNITED STATES OF AMERICA

(For PVP)

The Commissioner

Plant Variety Protection Office Agricultural Marketing Service Department of Agriculture Beltsville, Maryland 20705-2351

Phone: (1 301) 504 55 18 Fax: (1 301) 504 52 91

(For Plant Patent)

The Commissioner of Patents and

Trademarks

Patent and Trade Mark Office

Box 4

Washington DC 20231

Phone: (1 703) 305 93 00 Fax: (1 703) 305 88 85

URUGUAY

Instituto Nacional de Semillas (INASE)

Casilla de Correos 7731 Pando Canelone

Phone: (59 82) 288 7099 Fax: (59 82) 288 7077

e-mail: inasepre@adinet.com.uy

EUROPEAN UNION

(for applications filed within the EU)

Community Plant Variety Office P.O. Box 2141 F-49021 Angers Cedex FRANCE

Phone: (33 2) 41 25 64 32 Fax: (33 2) 41 25 64 10

CURRENT STATUS OF PLANT VARIETY PROTECTION LEGISLATURE IN UPOV MEMBER COUNTRIES

Australia³
Austria^{2,4}
Belgium^{1,4}
Bolivia²
Brazil²
Bulgaria³
Canada²
Chile²
China²
Columbia²
Czech Republic²
Denmark^{3,4}
Ecuador²
Finland^{2,4}
France^{2,4}

Argentina²

Germany^{3,4} Hungary² Ireland^{2,4} Israel³ Italy^{2,4} Japan³ Kenya²

Kyrgyz Republic³ Mexico² Netherlands^{3,4} New Zealand² Norway² Panama² Paraguay²

Portugal^{2,4} Republic of Estonia³ Republic of Moldova³

Romania³

Poland^{2,5}

Russian Federation³

Slovakia^{2.5} Slovenia⁵ South Africa^{2.5} Spain^{1,4} Sweden^{3,4} Switzerland²

Trinidad and Tobago²

Ukraine²

United Kingdom^{3,4}

USA³ Uruguay² (Total 47)

- 1 Bound by the 1961 Act as amended by the Additional Act of 1972.
- 2 Bound by the 1978 Act.
- 3 Bound by the 1991 Act.
- 4 Member of the European Community which has introduced a (supranational) Community plant variety rights system based upon the 1991 Act.
- 5 Has already amended its law to conform to the 1991 Act; most other states are in the process of doing so.

CENTRALISED TESTING CENTRES

Under Plant Breeder's Rights Regulations introduced in 1996, establishments may be officially authorised by the PBR office to conduct test growings. An authorised establishment will be known as Centralised Test Centre (CTC).

Usually, the implementation of PBR in Australia relies on a 'breeder testing' system in which the applicant, in conjunction with a nominated Qualified Person (QP), establishes, conducts and reports a comparative trial. More often than not, trials by several breeders are being conducted concurrently at different sites. This makes valid comparisons difficult and often results in costly duplication.

While the current system is and will remain satisfactory, other optional testing methods are now available which will add flexibility to the PBR process.

Centralised Testing is one such optional system. It is based upon the authorisation of private or public establishments to test one or more genera of plants. Applicants can choose to submit their varieties for testing by a CTC or continue to do the test themselves. Remember, using a CTC to test your variety is voluntary.

The use of CTCs recognises the advantages of testing a larger number of candidate varieties (with a larger number of comparators) in a single comprehensive trial. Not only is there an increase in scientific rigour but there are substantial economies of scale and commensurate cost savings. A CTC will establish, conduct and report each trial on behalf of the applicant.

The PBR office has amended its fees so that cost savings can be passed to applicants who choose to test their varieties in a CTC. Accordingly, when 5 or more candidate varieties of the same genus are tested simultaneously, each will qualify for the CTC examination fee of \$800. This is a saving of nearly 40% over the normal fee of \$1400.

Trials containing less than 5 candidate varieties capable of being examined simultaneously will not be considered as Centralised test trials regardless of the authorisation of the facility. Candidate varieties in non-qualifying small trials will not qualify for CTC reduction of examination fees.

Establishments wishing to be authorised as a CTC may apply in writing to the PBR office outlining their claims against the selection criteria. Initially, only one CTC will be authorised for each genus. Exemptions to this rule can be claimed due to special circumstances, industry needs and quarantine regulations. Authorisations will be reviewed periodically.

Authorisation of CTCs is not aimed solely at large research institutions. Smaller establishments with appropriate facilities and experience, can also apply for CTC status. There is no cost for authorisation as a CTC.

APPLICATIONS FOR AUTHORISATION AS A 'CENTRALISED TESTING CENTRE'

Establishments interested in gaining authorisation as a Centralised Testing Centre should apply in writing addressing each of the Conditions and Selection Criteria outlined below.

Conditions and Selection Criteria

To be authorised as a CTC, the following conditions and criteria will need to be met:

Appropriate facilities

While in part determined by the genera being tested, all establishments must have facilities that allow the conduct and completion of moderate to large scale scientific experiments without undue environmental influences. Again dependent on genera, a range of complementary testing and propagation facilities (e.g. outdoor, glasshouse, shadehouse, tissue culture stations) is desirable.

Experienced staff

Adequately trained staff, and access to appropriately accredited Qualified Persons, with a history of successful PVR/PBR applications will need to be available for all stages of the trial from planting to the presentation of the analysed data. These staff will require the authority to ensure timely maintenance of the trial. Where provided by the PBR office, the protocol and technical guidelines for the conduct of the trial must be followed.

Substantial industry support

Normally the establishment will be recognised by a state or national industry society or association. This may include/be replaced by a written commitment from major nurseries or other applicants, who have a history of regularly making applications for PBR in Australia, to use the facility.

Capability for long term storage of genetic material

Depending upon the genus, a CTC must be in a position to make a long term commitment to collect and maintain, at minimal cost, genetic resources of vegetatively propagated species as a source of comparative varieties. Applicants indicating a willingness to act as a national genetic resource centre in perpetuity will be favoured.

Contract testing for 3rd Parties

Unless exempted in writing by the PBR office operators of a CTC must be prepared to test varieties submitted by a third party.

Relationship between CTC and 3rd Parties

A formal arrangement between the CTC and any third party including fees for service will need to be prepared and signed before the commencement of the trial. It will include among other things: how the plant material will be delivered (e.g. date, stage of development plant, condition etc); allow the applicant and/or their agent and QP access to the site during normal working hours; and release the use of all trial data to the owners of the varieties included in the trial.

One trial at a time

Unless exempted in writing by the PBR office, all

candidates and comparators should be tested in a single trial.

One CTC per genus

Normally only one CTC will be authorised to test a genus. Special circumstances may exist (environmental factors, quarantine etc) to allow more than one CTC per genus,

though a special case will need to be made to the PBR office. More than one CTC may be allowed for roses.

One CTC may be authorised to test more than one genus. Authorisations for each genus will be reviewed periodically.

Authorised Centralised Test Centres (CTCs)

Following publication of applications for accreditation and ensuing public comment, the following organisations/individuals are authorised to act as CTCs. Any special conditions are also listed.

Name	Location	Approved Genera	Facilities	Name of QP	Date of accreditation	
Agriculture Victoria, National Potato Improvement Centre	Toolangi, VIC	Potato	Outdoor, field, greenhouse, tissue culture laboratory	R Kirkham G Wilson	31/3/97	
Bureau of Sugar Experiment Stations	Cairns, Tully, Ingham, Ayr, Mackay, Bundaberg, Brisbane QLD	Saccharum	Field, glasshouse, tissue culture, pathology	M Cox	30/6/97	
Ag-Seed Research	Horsham and other sites	Canola	Field, glasshouse, G Kadkol shadehouse, laboratory and biochemical analyses		30/6/97	
Agriculture Western Australia	Northam WA	Wheat	Field, laboratory	D Collins	30/6/97	
University of Sydney, Plant Breeding Institute	Camden, NSW	Argyranthemum, Diascia, Mandevilla, Oats	Outdoor, field, J Oates irrigation, greenhouses with controlled microclimates, controlled environment rooms, tissue culture, molecular genetics and cytology lab		30/6/97	
Boulters Nurseries Monbulk Pty Ltd	Monbulk, VIC	Clematis	Outdoor, shadehouse, greenhouse	M Lunghusen	30/9/97	
Geranium Cottage Nursery	Galston, NSW	Pelargonium	Field, controlled environment house	I Paananen	30/11/97	
Agriculture Victoria	Hamilton, VIC	Perennial ryegrass, tall fescue, tall wheat grass, white clover, persian clover	Field, shadehouse, glasshouse, growth chambers. Irrigation. Pathology and tissue culture. Access to DNA and molecular marker technology. Cold storage.	V Gellert M Anderson	30/6/98	
Koala Blooms	Monbulk, VIC	Bracteantha	Outdoor, irrigation	M Lunghusen	30/6/98	
Redlands Nursery	Redland Bay, QLD	Aglaonema	Outdoor, shadehouse, glasshouse and indoor facilities	K Bunker	30/6/98	
Protected Plant Promotions	Macquarie Fields, NSW	New Guinea Impatiens including Impatiens hawkeri and its hybrids	Glasshouse	I Paananen	30/9/98	
University of Queensland, Gatton College	Lawes, QLD	Some tropical pastures	Field, irrigation, D Hanger glasshouse, small phytotron, plant nursery & propagation, tissue culture, seed and chemical lab, cool storage		30/9/98	
Jan and Peter Iredell	Moggill, QLD	Bougainvillea	Outdoor, shadehouse	J Iredell	30/9/98	

Protected Plant Promotions	Macquarie Fields, NSW	Verbena	Glasshouse	I Paananen	31/12/98
Avondale Nurseries Ltd	Glenorie, NSW	Agapanthus	Greenhouse, tissue culture with commercial partnership	I Paananen	31/12/98
Paradise Plants	Kulnura, NSW	Camellia, Lavandula, Osmanthus, Ceratopetalum	Field, glasshouse, shadehouse, irrigation, tissue culture lab	J Robb	31/12/98
Prescott Roses	Berwick, VIC	Rosa	Field, controlled environment greenhouses	C Prescott	31/12/98
F & I Baguley Flower and Plant Growers	Clayton South, VIC	Euphorbia	Controlled glasshouses, quarantine facilities, tissue culture	G Guy	31/3/99
Paradise Plants	Kulnura, NSW	Limonium, Raphiolepis, Eriostemon, Lonicera, Jasminum	Field, glasshouse, shadehouse, irrigation, tissue culture lab	J Robb	
Ramm Pty Ltd	Macquarie Fields, NSW	Angelonia	Glasshouse	I Paananen	
Carol's Propagation	Alexandra Hills, QLD	Cuphea	Field beds, wide range of comparative varieties	C Milne	
Queensland Department of Primary Industries Redlands Research Station	Cleveland, QLD	Cynodon, Zoysia and other selected warm season- season turf and amenity species	Field, glasshouse, irrigation, tissue culture lab	D Loch	30/9/00
Luff Partnership	Kulnura, NSW	Bracteantha	Field beds, irrigation, shade house, propagation house, cool rooms	I Dawson	31/12/00
Ramm Pty Ltd	Macquarie Fields, NSW	Petunia, Calibrachoa	Glasshouse	I Paananen	31/12/00
NSW Agriculture	Temora	Triticum, Hordeum, Avena	field irrigation, glasshouse, climate controlled areas	P Breust	31/3/01
Bywong Nursery	Bungendore, NSW	Leptospermum	Field, shadehouse greenhouse	P Ollerenshaw	31/3/01

The following applications are pending:

Name	Location	Genera applied for	Facilities	Name of QP
Outeniqua Nursery	Monbulk, VIC	Unspecified	Outdoor, glasshouse	
University of Queensland, Gatton College	Lawes, QLD	Ornamental & bedding sp., wheat, millet, <i>Prunus</i> , <i>Capsicum</i> , <i>Glycine</i> , <i>Ipomea</i> , <i>Vigna</i> , <i>Lycopersicon</i> , Asian vegetables, Tropical fruits, <i>Solanum</i>	Field, irrigation, glasshouse, small phytotron, plant nursery & propagation, tissue culture, seed and chemical lab, cool storage	L Bahnisch R Fletcher D George M Johnston G Lewis G Porter D Tay A Wearing D Hanger

Comments (both for or against) either the continued accreditation of a CTC or applications to become a CTC are invited. Written comments are confidential and should be addressed to:

The Registrar Plant Breeders Rights Office PO Box 858 CANBERRA ACT 2601 Fax (02) 6272 3650

Closing date for comment: 15 June 2001.

104

LIST OF CLASSES FOR VARIETY DENOMINATION PURPOSES¹

As amended by the Council at its twenty-fifth ordinary session, on October 25, 1991.

[Recommendation 9

For the purposes of the fourth sentence of Article 13(2) of the Convention, all taxonomic units are considered closely related that belong to the same botanical genus or are contained in the same class in the list in Annex I to these Recommendations.]

Note: Classes which contain subdivisions of a genus may lead to the existence of a complementary class containing the other subdivisions of the genus concerned (example: Class 9 (Vicia faba) leads to the existence of another class containing the other species of the genus Vicia).*

Class 1: Avena, Hordeum, Secale, xTriticosecale, Triticum

Class 2: Panicum, Setaria

Class 3: Sorghum, Zea

<u>Class 4</u>: Agrostis, Alopecurus, Arrhenatherum, Bromus, Cynosurus, Dactylis, Festuca, Lolium, Phalaris, Phleum, Poa, Trisetum

<u>Class 5</u>: Brassica oleracea, Brassica chinensis, Brassica pekinensis

<u>Class 6</u>: Brassica napus, B. campestris, B. rapa, B. juncea, B. nigra, Sinapis

<u>Class 7</u>: Lotus, Medicago, Ornithopus, Onobrychis, Trifolium

Class 8: Lupinus albus L., L. angustifolius L., L. luteus L.

Class 9: Vicia faba L.

<u>Class 10</u>: Beta vulgaris L. var. alba DC., Beta vulgaris L. var. altissima

<u>Class 11</u>: Beta vulgaris ssp. vulgaris var. conditiva Alef. (syn.: Beta vulgaris L. var. rubra L.), Beta vulgaris L. var. cicla L., Beta vulgaris L. ssp. vulgaris var. vulgaris

Class 12: Lactuca, Valerianella, Cichorium

Class 13: Cucumis sativus

Class 14: Citrullus, Cucumis melo, Cucurbita

Class 15: Anthriscus, Petroselinum

Class 16: Daucus, Pastinaca

Class 17: Anethum, Carum, Foeniculum

Class 18: Bromeliaceae

Class 19: Picea, Abies, Pseudotsuga, Pinus, Larix

Class 20: Calluna, Erica

Class 21: Solanum tuberosum L.

Class 22: Nicotiana rustica L., N. tabacum L.

Class 23: Helianthus tuberosus

Class 24: Helianthus annuus

Class 25: Orchidaceae

<u>Class 26</u>: Epiphyllum, Rhipsalidopsis, Schlumbergera, Zygocactus

Class 27: Proteaceae

COMPLEMENTARY CLASSES

<u>Class 28:</u> Species of <u>Brassica</u> other than (in Class 5 + 6) Brassica oleracea, Brassica chinensis, Brassica pekinensis + Brassica napus, B. campestris, B. rapa, B. juncea, B. nigra, Sinapis

<u>Class 29:</u> Species of <u>Lupinus</u> other than (in Class 8) Lupinus albus L., L. angustifolius L., L. luteus L.

<u>Class 30:</u> Species of <u>Vicia</u> other than (in Class 9) Vicia faba L.

<u>Class 31:</u> Species of <u>Beta</u> + subdivisions of the species <u>Beta vulgaris</u> other than (in Class 10 +11) Beta vulgaris L. var. alba DC., Beta vulgaris L. var. altissima + Beta vulgaris ssp. vulgaris var. conditiva Alef. (syn.: Beta vulgaris L. var. rubra L.), Beta vulgaris L. var. cicla L., Beta vulgaris L. ssp. vulgaris var. vulgaris

<u>Class 32:</u> Species of <u>Cucumis</u> other than (in Class 13 + 14) Cucumis sativus + Citrullus, Cucumis melo, Cucurbita

<u>Class 33:</u> Species of <u>Solanum</u> other than (in Class 21) Solanum tuberosum L.

<u>Class 34:</u> Species of <u>Nicotiana</u> other than (in Class 22) Nicotiana rustica L., N. tabacum L.

<u>Class 35:</u> Species of <u>Helianthus</u> other than (in Class 23 + 24) Helianthus tuberosus + Helianthus annuus

From UPOV RECOMMENDATIONS ON VARIETY DENOMINATIONS, Adopted by The Council of UPOV on October 16, 1987, and amended on October 25, 1991

* The complementary classes have been added by the Office of the Union for the convenience of the reader and are given the numbers 28 to 35.

REGISTER OF PLANT VARIETIES

Register of Plant Varieties contains the legal description of the varieties granted Plant Breeder's Rights. Under section 62(1) of the Plant Breeder's Rights Act 1994 a person may inspect the Register at any reasonable time. Following are the contact details for registers kept in each state and territories*

South Australia

Ms Lisa Halskov **AOIS**

8 Butler Street

PORT ADELAIDE SA 5000

Phone 08 8305 9706

Western Australia

Mr Geoffrey Wood

AQIS

Level, Wing C Market City

280 Bannister Road

CANNING VALE WA 6154

Phone 08 9311 5407

New South Wales

Mr Alex Jabs General Services

AOIS

2 Hayes Road

ROSEBERY NSW 2018 Phone 02 9364 7293

Victoria and Tasmania

Mr Colin Hall

AOIS

Building D, 2nd Floor World Trade Centre Flinders Street

MELBOURNE VIC 3005 Phone 03 9246 6810

Oueensland

Mr Ian Haseler

AOIS 2nd Floor

433 Boundary Street SPRING HILL QLD 4000

Phone 07 3246 8755

Australian Capital Territory and Northern Territory

ACT and NT Registers are kept

in the Library of PBR Office in Canberra

Phone 02 6272 4228

APPENDIX 9

Apricot

Common Name to Botanical Name Index

For varieties included in this issue

Common Name Botanical Name Abelia Abelia **x**grandiflora Agapanthus Agapanthus orientalis

Agapanthus Agapanthus inapertus **x** orientalis

Agapanthus *Agapanthus praecox* subsp

orientalis

Alstroemeria Alstroemeria hybrid Apple Malus domestica

Apple Rootstock Malus prunifolia var ringo x Malus pumila var paradisiaca

Prunus armeniaca

Avocado Persea americana Baby's Breath Gypsophila paniculata Bacopa Sutera cordata Barley Hordeum vulgare Barrel Medic Medicago truncatula Phaseolus vulgaris Bean Birdsfoot Trefoil Lotus corniculatus Blue Potato Bush Solanum rantonettii Bougainvillea Bougainvillea hybrid Bougainvillea Bougainvillea spectabilis

Bower Wattle Acacia cognata Brome Grass Bromus stamineus Busy Lizzie Impatiens walleriana Canola Brassica napus var oleifera

Chickpea Cicer arietinum Chrysanthemum Chrysanthemum hybrid Cinnamon Wattle Acacia leprosa Clematis Clematis serratifolia Cocksfoot Dactylis glomerata Confetti Bush Coleonema pulchrum Coprosma hybrid Coprosma Gossypium hirsutum Cotton Cuphea hyssopifolia Cuphea

Durum Wheat Triticum turgidum ssp turgidum

Endophyte - Fescue Neotyphodium sp Endophyte – Ryegrass Neotyphodium lolii **Everlasting Daisy** Bracteantha bracteata False Feather Cuphea hyssopifolia Fanflower Scaevola aemula Field Bean Vicia faba Field Pea Pisum sativum Flamingo Flower Anthurium hybrid Gazania Gazania hybrid

Geraldton Wax Chamelaucium uncinatum

Golden Dewdrop Duranta repens Grape Vitis vinifera Hebe Hebe hybrid

Hybrid Bermuda Grass Cynodon transvaalensis X

Cynodon dactylon

Hybrid Ryegrass Lolium perenne x multiflorum Hydrangea Hydrangea macrophylla

Impatiens *Impatiens* hybrid India Rubber Tree Ficus elastica Lolium multiflorum Italian Ryegrass Ivy Pelargonium Pelargonium peltatum Lavender Lavandula angustifolia Lavender Lavandula hybrid

In accordance with an amendment to section 61 of Plant Breeder's Rights Act 1994, the Register of Plant Varieties will be kept only in one location, the Library of PBR Office in Canberra. Please contact PBR office if you need further information.

Lettuce Lactuca sativa Leucadendron Leucadendron hybrid Acmena smithii Lilly Pilly Lilly Pilly Syzygium paniculatum

Lily Lilium hybrid Limonium Limonium altaica Limonium Limonium hybrid Lovegrass Eragrostis elongata Lucerne Medicago sativa Magnolia Magnolia grandiflora

Citrus reticulata x Citrus sinensis Mandarin

Mandarin Citrus reticulata hybrid Mandevilla Mandevilla xamabilis Marguerite Daisy Argyranthemum frutescens

Marigold Tagetes hybrid Narbon Bean Vicia narbonensis

Native Couch Cynodon dactylon ssp pulchellus

Navy Bean Phaseolus vulgaris Oats Avena sativa Olearia Olearia axillaris Peach Prunus persica Arachis hypogaea Peanut Pentas lanceolata Pentas Perennial Ryegrass Lolium perenne Peruvian Lily *Alstroemeria* hybrid Petunia Petunia hybrid Philippine Violet Barleria cristata

Pimento Capsicum annuum var annuum

convar pomiferum Pink Dianthus hybrid Pittosporum Pittosporum tenuifolium Plantago lanceolata

Plantain Polygala Polygala myrtifolia var

grandiflora

Potato Solanum tuberosum Red Clover Trifolium pratense Rhododendron hybrid Rhododendron

Rosa hybrid Rose Ryegrass Lolium hybrid Sand Couch Sporobolus virginicus

Serruria florida x Serruria rosea Serruria

vanninicum

Solidago hybrid Solidago Spathiphyllum Spathiphyllum hybrid Strawberry Clover Trifolium fragiferum Strawflower Bracteantha bracteata Subterranean Clover Trifolium subterraneum var

Sutera cordata Sutera **Sweet Orange** Citrus sinensis

Syngonium Syngonium podophyllum Tall Fescue Festuca arundinacea Tea Tree Leptospermum hybrid *xTriticosecale* Triticale Turf Lily Liriope gigantea Twinspur Diascia hybrid Variegated Croton Codiaeum variegatum *Verbena* hybrid Verbena

Chamelaucium hybrid Waxflower Waxflower Chamelaucium uncinatum Waxflower Chamelaucium megalopetalum Waxflower Chamelaucium megalopetalum X

Chamelaucium uncinatum Waxflower Chamelaucium uncinatum X

Chamelaucium axillare

Waxflower hybrid Verticordia plumosa x

Chamelaucium uncinatum

Weeping Fig Ficus benjamina Wheat Triticum aestivum White Clover Trifolium repens White Lupin Lupinus albus

Xanthostemon Xanthostemon chrysanthus

Zoysia Grass Zoysia japonica Zoysia Grass Zoysia matrella

Register of Australian Winter Cereal Cultivars

Varietal Descriptions from the Voluntary Scheme for the Registration of Cereal Cultivars

Recently some procedural changes have been implemented in the operations of the Voluntary Cereal Registration Scheme. The Plant Breeder's Rights (PBR) office and the Voluntary Cereal Registration Scheme are collaborating to ensure that descriptions of new varieties, whether they are protected by PBR or not, are made available.

The Plant Varieties Journal now includes descriptions of cultivars registered under the Voluntary Cereal Registration Scheme. Please note that publishing a description in the Plant Varieties Journal does not automatically qualify a cultivar to be protected under Plant Breeder's Rights (PBR). PBR is entirely a different scheme and there are specific requirements under the Plant Breeder's Rights Act 1994 which must be satisfied to be eligible for registration under PBR. However, it is possible that some cultivars published in this section of the journal are also registered under PBR. When a cultivar is registered under both schemes, the current PBR status of the cultivar is indicated in the descriptions.

A Check list for Registering New Cereal Cultivars in the Voluntary Scheme

Breeders considering submitting a new variety to the voluntary scheme should:

- Clear the proposed name with Australian Winter Cereal Collection (AWCC). The AWCC will query available information systems to ensure that the proposed name will not be confused with other cultivars of the same group and issue a **registration number**. The timeframe for this process will usually be less than 24 hours, and can be done by phone, fax or by e-mail.
- Complete a registration form, including the registration number and forward the form to the Voluntary Cereal Registration Scheme – either by an email attachment or by ordinary mail on a 3.5 inch a IBM formatted floppy diskette. The breeders will be notified of the acceptance for a new registration within one week of its receipt.
- 3. Send an *untreated* one kilogram (1 kg) reference (or type) **sample of seed** to the Voluntary Cereal Registration Scheme for long term storage in the AWCC. Please indicate if there are any restrictions on the distribution of this seed. Unless advised to the contrary it will be assumed that seed samples of registered cultivars can be freely distributed by the AWCC to *bona fide* scientists for research purposes.

- 4. Provide a **description of the new cultivar** for publication in the *Plant Varieties Journal* and send it to the Voluntary Cereal Registration Scheme in Word for Windows or in RTF format either by an e-mail attachment or by ordinary mail on a 3.5 inch IBM formatted floppy diskette. In general, a description should contain the following headings:
- Common name
- · Botanical name
- Cultivar name
- Registration number
- · Registration date
- Name and address of Originators
- Name and address of Registrar of Cereal Cultivars
- · Released by
- Synonyms (if any)
- Parentage
- · Breeding and selection
- Morphology
- Disease Reaction
- Yield
- Quality
- PBR Status (if any)
- Acknowledgment(if any)
- Breeder

In addition, you may also include other headings if they are relevant to the description of the variety. Please follow the general style and format of the descriptions published in the current issue. Please note: <u>always</u> format your description <u>in a single column</u>, **do not format in two columns**. Columns will be formatted during the publication process.

The **Voluntary Cereal Registration Scheme** will electronically forward your description to the *Plant Varieties Journal* for publication. *Plant Varieties Journal* reserves the right for editorial corrections and the edited versions will be forwarded to the breeder for review before the final publication. Publication cost will be charged on a cost recovery basis with invoices sent directly from the PBR office to the breeder. The nominal cost will be \$400.00 (four hundred dollars) per variety.

There are no descriptions from the Voluntary Cereal Registration Scheme included in this issue.

Contact information

Registration

Voluntary Cereal Registration Scheme

C/- Australian Winter Cereals Collection RMB 944, Calala Lane TAMWORTH NSW 2340

Phone: (02) 6763 1149 Fax: (02) 6763 1154

e-mail: mackaym@agric.nsw.gov.au

Publication

Registrar PBR

Plant Breeder's Rights Office GPO Box 858 CANBERRA ACT 2601

Phone: (02) 6272 4228 Fax: (02) 6272 3650

e-mail: Doug.Waterhouse@affa.gov.au

SERVICE DIRECTORY

WARATAH SEED CO. LTD.

The Seed Professionals

Broadacre Crop Seed Specialists

All Members NSW Registered Cereal Growers

Will Licence, Sub Licence or Contract grow your varieties under Internal,
Registered or Certified Schemes

Professional Seedgrowers with strong affiliations Australia wide

"We are ready to grow"

Contact:
Head Office
Mrs Danielle Anderson
Executive Officer
'Bloomsdale', Suntop Road
WELLINGTON NSW 2820

Phone: 02 6845 3097 Fax: 02 6845 3151

Email: waratah@well-com.net

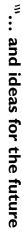
DAVIES COLLISON CAVE PATENT & TRADE MARK ATTORNEYS

NUMBER 1*

Patent & Trade Mark Attorneys In Australia for the past 4 years

Specialists in PBR matters – Dr Stearne, Author of Laws of Australia, Chapter on Plant Breeders Rights

>Trade Mark specialists >US Plant Patent Expertise


Contact:

Dr Peter Stearne pstearne@davies.com.au Tel: 61 2 9262 2611

Fax: 61 2 9262 1080

Offices in Sydney Melbourne Canberra Brisbane www.davies.com.au

* as voted by the prestigious UK-based Managing Intellectual Property Journal

ADVERTISE YOUR NEW VARIETY OR SERVICES IN THE

Plant Varieties Journal

Plant Breeders and their agents are invited to take this opportunity to promote their new plant varieties by advertising in the Plant Varieties Journal. Consultant Qualified Persons are also invited to advertise their services. The Journal is well circulated throughout the horticultural and agricultural industry. Advertising in the Journal will promote the commercialisation of new plant varieties and the services offered by the qualified persons. Our policy is to promote the varieties which are currently in the PBR scheme and the services of those who are currently accredited by the PBR office.

The Journal also has a Service Directory. This Directory is suitable for advertising the services provided by Consultant Qualified Persons, Agents, Patent Attorneys, CTC sites or photographers.

Advertising is available at a casual space rate as well as a four times rate, attracting a considerable discount of 25%! Advertisements will be published on the back cover or inside front and back covers. The front cover is restricted to full colour photographs of a PBR variety.

Advertising Rates (incl GST)

			Casual	4 issues
Front Cover	(Full Page only)	Colour	\$1193.00	\$3579.00
Back Cover	(Full Page)	Colour	894.00	2684.00
	(Full Page)	Mono	596.00	1790.00
Inside Front Cover	(Full Page)	Mono	477.00	1431.00
	(Half Page)	Mono	298.00	894.00
Inside Back Cover	(Full Page)	Mono	357.00	1073.00
	(Half Page)	Mono	239.00	716.00
Service Directory	(6cm x 6cm)	Mono	60.00 per s	spot

For bookings or further information please contact Kathryn Dawes-Read on 02 6272 4338, fax 02 6272 3650 or email Kathryn.Dawes-Read@affa.gov.au

Plant Breeder's Rights

In industry, product innovation can give you the competitive edge but you need to protect your investment to ensure a sustainable return.

Plant Breeder's Rights (PBR) are a form of intellectual property that allow breeders to decide how their new varieties are to be distributed and marketed.

Varieties protected by PBR may only be produced for sale or sold by growers, distributors and retailers licensed by the plant breeder. If you would like more information about your rights as a plant breeder, please contact:

Plant Breeder's Rights

Department of Agriculture, Fisheries and Forestry - Australia GPO Box 858 CANBERRA ACT 2601

Or you can visit our website:

www.affa.gov.au/pbr

Telephone: (02) 6272 4228 Facsimile: (02) 6272 3650 (D PBR